Skip to main content

Studying Movement of Avian Scavengers to Understand Carrion Ecology

  • Chapter
  • First Online:
Carrion Ecology and Management

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 2))

Abstract

Scavenging is a key process in the ecosystems. Studying foraging movements of obligate scavengers such as vultures can contribute to a better understanding of the scavenging-related patterns and processes. Here we review methods that can be used to track foraging vultures in the field. Yet, in order to track, vultures need to be trapped and tagged in manner that would ensure their health and normal survival and behavior. GPS telemetry is currently the best tool to track vultures for foraging studies. In a review of recent studies, we highlight the predominance of studies of species from Europe, North America and Southern Africa, and we deplore the lack of knowledge of species from the Tropics. Home ranges vary tremendously between sites, season and species (from a few km2 to >300,000 km2) but also depending on the analysis method used. Daily distances travelled are more repeatable between species, with values ranging between 30 and 40 km. Yet the way that carrion distribution can affect scavenger distribution and foraging behavior is still poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon PAE, Morales JM, Donazar JA, Sanchez-Zapata JA, Hiraldo F, Lambertucci SA (2017) Sexual-size dimorphism modulates the trade-off between exploiting food and wind resources in a large avian scavenger. Sci Rep 7:11461. https://doi.org/10.1038/s41598-017-11855-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrondo E, Moleon M, Cortes-Avizanda A, Jimenez J, Beja P, Sanchez-Zapata JA, Donazar JA (2018) Invisible barriers: differential sanitary regulations constrain vulture movements across country borders. Biol Conserv 219:46–52. https://doi.org/10.1016/j.biocon.2017.12.039

    Article  Google Scholar 

  • Avery ML, Humphrey JS, Daughtery TS, Fischer JW, Milleson MP, Tillman EA, Bruce WE, Walter WD (2011) Vulture flight behavior and implications for aircraft safety. J Wildl Manag 75(7):1581–1587. https://doi.org/10.1002/jwmg.205

    Article  Google Scholar 

  • Bamford AJ, Diekmann M, Monadjem A, Mendelsohn J (2007) Ranging behaviour of cape vultures Gyps coprotheres from an endangered population in Namibia. Bird Conserv Int 17(04):331–339. https://doi.org/10.1017/S0959270907000846

    Article  Google Scholar 

  • Bamford AJ, Monadjem A, Diekmann M, Hardy ICW (2009) Development of non-explosive-based methods for mass capture of vultures. S Afr J Wildl Res 39(2):202–208. https://doi.org/10.3957/056.039.0201

    Article  Google Scholar 

  • Barber DR, Bildstein KL (2011) A lightweight portable, walk-in trap for catching vultures. Vulture News 60:22–25

    Google Scholar 

  • Batbayar N, Reading R, Kenny D, Natsagdorj T, Kee PW (2008) Migration and movement patterns of cinereous vultures in Mongolia. Falco 32:5–7

    Google Scholar 

  • Benhamou S, Cornélis D (2010) Incorporating movement behavior and barriers to improve Kernel home range space use estimates. J Wildl Manag 74(6):1353–1360. https://doi.org/10.2193/2009-441

    Article  Google Scholar 

  • Bird DM, Bildstein KL (2007) Raptor research and management techniques. Hancock House Publishers, Surrey

    Google Scholar 

  • Bloom P, Clark W, Kidd J (2007) Capture techniques. In: Bird DM, Bildstein KL (eds) Raptor research and management techniques. Hancock House Publishers, Surrey, pp 242–248

    Google Scholar 

  • Bögel R, Prinzinger R, Karl E, Walzer C (2000) A multisensor telemetry system for studying flight biology and energetics of free-flying griffon vultures - Gyps fulvus. A case study. In: Chancellor RD, Meyburg B-U (eds) Raptors at risk. WWGBP/Hancock House, Johannesburg, pp 879–883

    Google Scholar 

  • Bonter DN, Bridge ES (2011) Applications of radio frequency identification (RFID) in ornithological research: a review. J Field Ornithol 82(1):1–10. https://doi.org/10.1111/j.1557-9263.2010.00302.x

    Article  Google Scholar 

  • Bosè M, Duriez O, Sarrazin F (2012) Intra-specific competition in foraging griffon vultures: 1. The dynamics of feeding in groups. Bird Study 59:182–192. https://doi.org/10.1080/00063657.2012.658639

    Article  Google Scholar 

  • Buckley NJ (1996) Food finding and the influence of information, local enhancement, and communal roosting on foraging success of North American vultures. Auk 113(2):473–488

    Article  Google Scholar 

  • Carrete M, Bortolotti GR, Sánchez-Zapata JA et al (2013) Stressful conditions experienced by endangered Egyptian vultures on African wintering areas. Anim Conserv 16(3):353–358. https://doi.org/10.1111/acv.12001

    Article  Google Scholar 

  • Castaño JP, Sanchez JF, Diaz-Portero MA, Robles M (2015) Dispersal and survival of juvenile black vultures Aegypius monachus in central Spain. Ardeola 62(2):351–361

    Article  Google Scholar 

  • Cortes-Avizanda A, Jovani R, Donazar JA, Grimm V (2014) Bird sky networks: how do avian scavengers use social information to find carrion? Ecology 95(7):1799–1808. https://doi.org/10.1890/13-0574.1

    Article  PubMed  Google Scholar 

  • DeVault TL, Beasley JC, Olson ZH et al (2016) Ecosystem services provided by avian scavengers. In: Sekercioglu CH (ed) Why birds matter. University of Chicago Press, Chicago, p 36

    Google Scholar 

  • Deygout C, Gault A, Sarrazin F, Bessa-Gomes C (2009) Modeling the impact of feeding stations on vulture scavenging service efficiency. Ecol Model 220(15):1826–1835

    Article  Google Scholar 

  • Deygout C, Gault A, Duriez O, Sarrazin F, Bessa-Gomes C (2010) Impact of food predictability on social facilitation by foraging scavengers. Behav Ecol 21(6):1131–1139. https://doi.org/10.1093/beheco/arq120

    Article  Google Scholar 

  • Dodge S, Bohrer G, Bildstein K, Davidson SC et al (2014) Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos Trans R Soc London Ser B 369:1643. https://doi.org/10.1098/rstb.2013.0195

    Article  Google Scholar 

  • Dupont H, Mihoub JB, Becu N, Sarrazin F (2011) Modelling interactions between scavenger behaviour and farming practices: impacts on scavenger population and ecosystem service efficiency. Ecol Model 222(4):982–992

    Article  Google Scholar 

  • Duriez O, Kato A, Tromp C et al (2014) How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures. PLoS One 9(1):e84887

    Article  Google Scholar 

  • Fluhr J, Benhamou S, Riotte-Lambert L, Duriez O (2017) Assessing the risk for an obligate scavenger to be dependent on predictable feeding sources. Biol Conserv 215:92–98

    Article  Google Scholar 

  • Garcia-Ripolles C, Lopez-Lopez P, Urios V (2011) Ranging behaviour of non-breeding Eurasian Griffon Vultures Gyps fulvus: a GPS-telemetry study. Acta Ornithol 46:127–134

    Article  Google Scholar 

  • Gavashelishvili A, McGrady M, Ghasabian M, Bildstein KL (2012) Movements and habitat use by immature cinereous vultures (Aegypius monachus) from the caucasus. Bird Study 59:449–462. https://doi.org/10.1080/00063657.2012.728194

    Article  Google Scholar 

  • Gil JA, Baguena G, Sanchez-Castilla E et al (2014) Home ranges and movements of non-breeding bearded vultures tracked by satellite telemetry in the Pyrenees. Ardeola 61:379–387

    Article  Google Scholar 

  • Gilbert M, Watson RT, Ahmed S et al (2007) Vulture restaurants and their role in reducing diclofenac exposure in Asian vultures. Bird Conserv Int 17(1):63–77. https://doi.org/10.1017/s0959270906000621

    Article  Google Scholar 

  • Harel R, Duriez O, Spiegel O et al (2016a) Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales. Philos Trans R Soc London Ser B 371(1704):20150397. https://doi.org/10.1098/rstb.2015.0397

    Article  Google Scholar 

  • Harel R, Horvitz N, Nathan R (2016b) Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci Rep 6:27865

    Article  CAS  Google Scholar 

  • Harel R, Spiegel O, Getz WM, Nathan R (2017) Social foraging and individual consistency in following behaviour: testing the information centre hypothesis in free-ranging vultures. Proc R Soc Lond B 284:1852. https://doi.org/10.1098/rspb.2016.2654

    Article  Google Scholar 

  • Holland AE, Byrne ME, Bryan AL, DeVault TL, Rhodes OE, Beasley JC (2017) Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus) and turkey vultures (Cathartes aura). PLoS One 12(7):e0179819

    Article  Google Scholar 

  • Houston DC (1974) Food searching in griffon vultures. East Afr Wild J 12:63–77

    Article  Google Scholar 

  • Houston DC (1975) Ecological isolation of African scavenging birds. Ardea 63:55–64

    Google Scholar 

  • Houston DC (1994) Family cathartidae (new world vultures). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, New world vultures to guineafowls, vol 2. Lynx Edición, Barcelona, pp 24–41

    Google Scholar 

  • Iezekiel S, Woodley B, Hatzofe O (2003) Cage traps for Gyps fulvus. Vulture News 49:14–16

    Google Scholar 

  • Jackson AL, Ruxton GD, Houston DC (2008) The effect of social facilitation on foraging success in vultures: a modelling study. Biol Lett 4(3):311–313

    Article  Google Scholar 

  • Kane A, Jackson AL, Ogada DL, Monadjem A, McNally L (2014) Vultures acquire information on carcass location from scavenging eagles. Proc R Soc Lond B 281:1793. https://doi.org/10.1098/rspb.2014.1072

    Article  Google Scholar 

  • Kane A, Wolter K, Neser W, Kotze A, Naidoo V, Monadjem A (2016) Home range and habitat selection of cape vultures Gyps coprotheres in relation to supplementary feeding. Bird Study 63:387–394. https://doi.org/10.1080/00063657.2016.1214105

    Article  Google Scholar 

  • Kendall CJ, Virani MZ, Hopcraft JGC, Bildstein KL, Rubenstein DI (2014) African vultures don’t follow migratory herds: scavenger habitat use is not mediated by prey abundance. PLoS One 9(1):e83470

    Article  Google Scholar 

  • Krüger S, Amar A (2017) Insights into post-fledging dispersal of bearded vultures Gypaetus barbatus in Southern Africa from GPS satellite telemetry. Bird Study 64(2):125–131. https://doi.org/10.1080/00063657.2017.1295019

    Article  Google Scholar 

  • Krüger S, Reid T, Amar A (2014) Differential range use between age classes of Southern African bearded vultures Gypaetus barbatus. PLoS One 9(12):e114920

    Article  Google Scholar 

  • Lambertucci SA, Alarcon PAE, Hiraldo F, Sanchez-Zapata JA, Blanco G, Donazar JA (2014) Apex scavenger movements call for transboundary conservation policies. Biol Conserv 170:145–150. https://doi.org/10.1016/j.biocon.2013.12.041

    Article  Google Scholar 

  • Lopez-Lopez P, Garcia-Ripolles C, Urios V (2014) Food predictability determines space use of endangered vultures: implications for management of supplementary feeding. Ecol Appl 24(5):938–949. https://doi.org/10.1890/13-2000.1

    Article  PubMed  Google Scholar 

  • Margalida A, Perez-Garcia JM, Moreno-Opo R (2017) European policies on livestock carcasses management did not modify the foraging behavior of a threatened vulture. Ecol Indic 80:66–73. https://doi.org/10.1016/j.ecolind.2017.04.048

    Article  Google Scholar 

  • Mateo-Tomas P, Olea PP, Moleon M, Selva N, Sanchez-Zapata JA (2017) Both rare and common species support ecosystem services in scavenger communities. Global Ecol Biogeo 26(12):1459–1470

    Article  Google Scholar 

  • Mihoub J-B, Prince K, Duriez O, Lécuyer P, Eliotout B, Sarrazin F (2013) Comparing release method effects on post-release survival of the European black vulture Aegypius monachus reintroduced population in France. Oryx 48:106–115

    Article  Google Scholar 

  • Monsarrat S, Benhamou S, Sarrazin F, Bessa-Gomes C, Bouten W, Duriez O (2013) How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers? PLoS One 8(1):e53077

    Article  CAS  Google Scholar 

  • Moreno-Opo R, Arredondo A, Guil F (2011) Foraging range and diet of Cinereous vulture Aegypius monachus using livestock resources in Central Spain. Ardeola 57:111–119

    Google Scholar 

  • Moreno-Opo R, Trujillano A, Arredondo A, Gonzalez LM, Margalida A (2015) Manipulating size, amount and appearance of food inputs to optimize supplementary feeding programs for European vultures. Biol Conserv 181:27–35. https://doi.org/10.1016/j.biocon.2014.10.022

    Article  Google Scholar 

  • Moreno-Opo RN, Trujillano A, Margalida A (2016) Behavioral coexistence and feeding efficiency drive niche partitioning in European avian scavengers. Behav Ecol 27:1041–1052. https://doi.org/10.1093/beheco/arw010

    Article  Google Scholar 

  • Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM (2012) Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for Griffon vultures. J Exp Biol 215:986–996

    Article  Google Scholar 

  • Ogada DL, Torchin ME, Kinnaird MF, Ezenwa VO (2012) Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv Biol 26(3):453–460. https://doi.org/10.1111/j.1523-1739.2012.01827.x

    Article  CAS  PubMed  Google Scholar 

  • Oppel S, Dobrev V, Arkumarev V, Saravia V, Bounas A, Kret E, Velevski M, Stoychev S, Nikolov SC (2015) High juvenile mortality during migration in a declining population of a long-distance migratory raptor. Ibis 157:545–557. https://doi.org/10.1111/ibi.12258

    Article  Google Scholar 

  • Pennycuick CJ (1972) Soaring behaviour and performance of some East African birds observed from a motor glider. Ibis 114:178–218

    Article  Google Scholar 

  • Phipps WL, Willis SG, Wolter K, Naidoo V (2013a) Foraging ranges of immature African white-backed vultures (Gyps africanus) and their use of protected areas in Southern Africa. PLoS One 8(1):e52813

    Article  CAS  Google Scholar 

  • Phipps WL, Wolter K, Michael MD, MacTavish LM, Yarnell RW (2013b) Do power lines and protected areas present a catch-22 situation for cape vultures (Gyps coprotheres)? PLoS One 8(10):e76794

    Article  CAS  Google Scholar 

  • Rappole JH, Tipton AR (1991) New harness design for attachment of radio transmitters to small passerines. J Field Ornithol 62:335–337

    Google Scholar 

  • Reading PP, Maude G, Hancock P, Kenny D, Garbett R (2014) Comparing different types of patagial tags for use on vultures. Vulture News 67:33–42

    Article  Google Scholar 

  • Reid T, Krüger S, Whitfield DP, Amar A (2015) Using spatial analyses of bearded vulture movements in Southern Africa to inform wind turbine placement. J Appl Ecol 52:881–892. https://doi.org/10.1111/1365-2664.12468

    Article  Google Scholar 

  • Rivers JW, Johnson JM, Haig SM, Schwarz CJ, Burnett LJ, Brandt J, George D, Grantham J (2014) An analysis of monthly home range size in the critically endangered California Condor Gymnogyps californianus. Bird Conserv Int 24:492–504. https://doi.org/10.1017/S0959270913000592

    Article  Google Scholar 

  • Ruxton GD, Houston DC (2004) Obligate vertebrate scavengers must be large soaring fliers. J Theor Biol 228(3):431–436

    Article  Google Scholar 

  • Sebastián-González E, Moleón M, Gibert JP, Botella F, Mateo-Tomás P, Olea PP, Guimarães PR, Sánchez-Zapata JA (2016) Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97(1):95–105. https://doi.org/10.1890/15-0212.1

    Article  PubMed  Google Scholar 

  • Sherub S, Bohrer G, Wikelski M, Weinzierl R (2016) Behavioural adaptations to flight into thin air. Biol Lett 12:10. https://doi.org/10.1098/rsbl.2016.0432

    Article  Google Scholar 

  • Sherub S, Fiedler W, Duriez O, Wikelski M (2017) Bio-logging - new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J Comp Physiol A 203(6):531–542. https://doi.org/10.1007/s00359-017-1180-x

    Article  Google Scholar 

  • Spiegel O, Getz WM, Nathan R (2013a) Factors influencing search efficiency: why do scarce Lappet-faced vultures outperform ubiquitous white-backed vultures. Am Nat 181:5. https://doi.org/10.1086/670009

    Article  Google Scholar 

  • Spiegel O, Harel R, Getz W, Nathan R (2013b) Mixed strategies of griffon vultures’ (Gyps fulvus) response to food deprivation lead to a hump-shaped movement pattern. Mov Ecol 1(1):5

    Article  Google Scholar 

  • Treep J, Bohrer G, Shamoun-Baranes J, Duriez O, Prata de Moraes Frasson R, Bouten W (2016) Using high resolution GPS tracking data of bird flight for meteorological observations. Bull Am Meteorol Soc 97(6):951–961. https://doi.org/10.1175/bams-d-14-00234.1

    Article  Google Scholar 

  • Trefry S, Diamond A, Jesson L (2013) Wing marker woes: a case study and meta-analysis of the impacts of wing and patagial tags. J Ornithol 154(1):1–11. https://doi.org/10.1007/s10336-012-0862-y

    Article  Google Scholar 

  • Tremblay Y, Thiébault A, Mullers R, Pistorius P (2014) Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey. PLoS One 9(2):e88424

    Article  Google Scholar 

  • Urios V, Lopez-Lopez P, Limiñana R, Godino A (2010) Ranging behaviour of a juvenile bearded vulture (Gypaetus barbatus meridionalis) in South Africa revealed by GPS satellite telemetry. Ornis Fenn 87:114–118

    Google Scholar 

  • Vasilakis DP, Whitfield DP, Schindler S, Poirazidis KS, Kati V (2016) Reconciling endangered species conservation with wind farm development: cinereous vultures (Aegypius monachus) in South-Eastern Europe. Biol Conserv 196:10–17. https://doi.org/10.1016/j.biocon.2016.01.014

    Article  Google Scholar 

  • Wallace MP, Parker GP, Temple SA (1980) An evaluation of patagial markers for cathartid vultures. J Field Ornithol 51:309–314

    Google Scholar 

  • Williams HJ, Holton MH, Shepard EL, Largey N, Norman JA, Ryan P, Duriez O, Scantlebury M, Quintana F, Magowan E, Wilson RP (2017) Identification of animal movement patterns using tri-axial magnetometry. Mov Ecol 5:6. https://doi.org/10.1186/s40462-017-0097-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson B (2015) An introduction to camera trapping of wing-tagged vultures in Southern Africa. Vulture News 69:3–22

    Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1):164–168

    Article  Google Scholar 

  • Xirouchakis SM, Andreou G (2009) Foraging behaviour and flight characteristics of Eurasian griffons Gyps fulvus in the island of Crete, Greece. Wildl Biol 15(1):37–52. https://doi.org/10.2981/07-090

    Article  Google Scholar 

  • Yamaç E, Bilgin CC (2012) Post-fledging movements of cinereous vultures Aegypius monachus in Turkey revealed by GPS telemetry. Ardea 100(2):149–156. https://doi.org/10.5253/078.100.0206

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank all their colleagues who helped capturing and tagging vultures in the field, A. Camiña, I. Shaked and J. Brandt for providing photos of trapping and tagging techniques, and the editors of the book for giving the opportunity to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Duriez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duriez, O., Harel, R., Hatzofe, O. (2019). Studying Movement of Avian Scavengers to Understand Carrion Ecology. In: Olea, P., Mateo-Tomás, P., Sánchez-Zapata, J. (eds) Carrion Ecology and Management. Wildlife Research Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-16501-7_11

Download citation

Publish with us

Policies and ethics