Skip to main content

Continental Crustal Structure

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Seismic reflection and refraction profiling supplying velocity-depth functions and relations to petrology is the key to probe the continental crust.

Introduction

In the last 20 years, much progress has been made in the development of geophysical techniques that increased our knowledge about the variability of crustal structure substantially (see “Deep Seismic Reflection and Refraction Profiling”). A big misunderstanding, still often presented today, is the use of the phrase “the” crust. This is a marked oversimplification. Continental crust has been found to be extremely different (Christensen and Mooney 1995; Mooney 2015; Rudnick and Gao 2014; Hacker et al. 2015). There are at least three main types to be distinguished (see “Lithosphere, Continental”).

  1. 1.

    Thick, old cratons, shields, and platforms

  2. 2.

    Orogens, often related to continental subduction

  3. 3.

    Extensional areas, including shelves and rifts

Thick Precambrian cratons, disrupted by early plate tectonics, are presently...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almquist BSG, Mainprice D (2017) Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure. Rev Geophys 55. https://doi.org/10.1002/2016RG000552. 524

    Article  Google Scholar 

  • Barruol G, Kern H (1996) Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone – experimental and calculated data. Phys Earth Planet Inter 95:175–194

    Article  Google Scholar 

  • Bauer K, Trumbull RB, Victor T (2003) Geophysical images and a crustal model of the intrusive structures beneath the Messum ring complex, Namibia. Earth Planet Sci Lett 216:65–80

    Article  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Article  Google Scholar 

  • Christensen NI, Wepfer WW (1989) Laboratory techniques for determining seismic velocities and attenuations, with applications to the continental lithosphere. In: Pakiser LC, Mooney WD (eds) Geophysical framework of the continental United States. Geophysical Society of America Memoir, 172. Geological Society of America, Boulder

    Google Scholar 

  • Crampin S (1987) The geological and industrial implications of extensive-dilatancy anisotropy. Nature 328:491–496

    Article  Google Scholar 

  • Crampin S, Gao Y (2018) Evidence supporting new geophysics. Earth Planet Phys 2:173–188. https://doi.org/10.26464/epp2018018

    Article  Google Scholar 

  • Downes H, Dupuy C, Leyreloup A (1990) Crustal evolution of the Herzynian belt of Western Europe: evidence from lower crustal granulitic xenoliths. Chem Geol 68:291–303

    Article  Google Scholar 

  • Ebbing J (2004) The crustal structure of the Eastern Alps from a combination of 3D gravity modeling and isostatic investigations. Tectonophysics 350:89–104

    Article  Google Scholar 

  • Fountain D, Salisbury MH (1981) Exposed cross sections through the continental crust; Implications for the crustal structure, petrology and evolution. Earth Planet Sci Lett 56:263–277

    Article  Google Scholar 

  • Guterch A, Grad M, Thybo H, Keller GR, POLONAISE Working Group (1997) POLONAISE ’97 – an international seismic experiment between Precambrian and Variscan Europe in Poland. Tectonophysics 314:101–121

    Article  Google Scholar 

  • Hacker BR, Keleman PB, Behn MD (2015) Continental lower crust. Annual Review of Earth and Planetary Sciences 43:167–205

    Article  Google Scholar 

  • Jackson I, Rudnick RL, O’Reilly SY, Bezant C (1990) Measured and calculated elastic wave velocities for xenoliths from the lower crust and upper mantle. Tectonophysics 173:207–210

    Article  Google Scholar 

  • Ji SC, Wang Q, Xia B (2002) Handbook of seismic properties of minerals, rocks, and ores. Polytechnic International Press, Montreal, 630 pp

    Google Scholar 

  • Ji S, Shao T, Michibayashi K, Oya S, Satsukawa T, Wang Q, Zhao W, Salisbury M (2015) Magnitude and symmetry of seismic anisotropy in mica- and amphibole- bearing metamorphic rocks and implications for tectonic interpretation of seismic data from southeast Tibetan Plateau. J Geophys Res 120. https://doi.org/10.1002/2015JB012209

    Google Scholar 

  • Kern H, Schenk V (1988) A model of velocity structure beneath Calabria, South Italy, on laboratory data. Earth Planet Sci Lett 87:325–337

    Article  Google Scholar 

  • Kern H, Wenk H-R (1990) Fabric related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa mylonite Zone, California. J Geophys Res 95:11213–11223

    Article  Google Scholar 

  • Kern H, Gao S, Jin Z, Popp T, Jin S (1999) Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China: implications for the composition and delamination of the lower crust. Tectonophysics 301:191–215

    Article  Google Scholar 

  • Kern H, Popp T, Gorbatsevich F, Zharikov A, Lobanov KV, Smirnov YP (2001) Pressure and temperature dependence of Vp and Vs in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy. Tectonophysics 338:113–134

    Article  Google Scholar 

  • Korja A, Hyönen T, Tira T, Heikkinen P (2009) Examining three-dimensional crustal heterogeneity in Finland. Eos Trans AGU 90(15):129–130

    Article  Google Scholar 

  • McBride JH, White RS, Smallwood JR, England RW (2004) Must magmatic intrusion in the lower crust produce reflectivity? Tectonophysics 388:271–297

    Article  Google Scholar 

  • Meissner R, Brown L (1991) Seismic reflections from the Earth’s crust: comparative studies of tectonic patterns. Geophys J Int 105:1–2

    Article  Google Scholar 

  • Meissner R, Kern H (2008) Earthquakes and strength in the laminated lower crust – can they be explained by the corset model? Tectonophysics 448:49–59

    Article  Google Scholar 

  • Meissner R, Rabbel W, Kern H (2006) Seismic lamination and anisotropy of the lower continental crust. Tectonophysics 416:81–99

    Article  Google Scholar 

  • Mengel K, Kern H (1992) Evolution of the petrological and seismic Moho – implications for the continental crust-mantle boundary. Terra Nova 4:109–116

    Article  Google Scholar 

  • Mooney W (2015) Crust and lithospheric structure – global crustal structure. In: Treatise of geophysics, vol I, 2nd edn, pp 339–390

    Chapter  Google Scholar 

  • Mooney WD, Rao VV, Chulik GS, Detweiler ST (2005) Comparison of the deep crustal structure and seismicity of North America with the Indian Subcontinent. Curr Sci 88:1639–1651

    Google Scholar 

  • Nur A, Simmons C (1969) The effect of saturation on velocity in low-porosity rocks. Earth Planet Sci Lett 7:183

    Article  Google Scholar 

  • O’Reilly S, Griffin W (2013) Moho vs crust-mantle boundary: evolution of an idea. Tectonophysics 609:535–546

    Article  Google Scholar 

  • Pawlenkowa N (1996) Crust and mantle structure in Northern Eurasia from seismic data. In: Dmowska R, Saltzmann B (eds) Advances in geophysics, vol 37. Academic, San Diego

    Google Scholar 

  • Popp T, Kern H (1994) The influence of dry and water-saturated cracks on seismic velocities of crustal rocks – a comparison of experimental data with theoretical model. Surv Geophys 15:443–465

    Article  Google Scholar 

  • Roberts AW, White RS, Christie PAF (2009) Imaging igneous rocks on the North Atlantic rifted continental margin. Geophys J Int 179:1029–1038

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rudnick R, Gao S (2014) Composition of the continental crust. In: Treatise on geochemistry, vol 4, 2nd edn. Elsevier, Amsterdam, pp 1–51

    Google Scholar 

  • Vasin RN, Kern H, Lokajicek T, Svitek T, Lehmann E, Mannes DC, Chaousche M, Wenk H-R (2017) Elastic anisotropy of Tambo gneiss from Promontogno, Switzerland: a comparison of crystal orientation and microstructure-based modelling and experimental measurements. Geophys J Int 209:1–20

    Google Scholar 

  • Warner M (1960) Absolute reflection coefficients from deep seismic reflections. Tectonophysics 173:15–23

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the assistance of Gudrun Reim (Kiel) in preparing the figures, and we thank Walter Mooney (Menlo Park) for his review, leading to many improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meissner, R., Kern, H. (2019). Continental Crustal Structure. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics