Skip to main content

Temperature Extremes: Impact on Rice Growth and Development

  • Chapter
  • First Online:
Plant Abiotic Stress Tolerance

Abstract

Temperature is a major environmental factor affecting the plant growth and development worldwide. Low and high temperatures are considered as the major environmental stresses for crop plants. Global climate changes have triggered the occurrence and frequency of temperature extremes, thus these stresses are becoming the major concern for the plant researchers around the globe. Both these stresses have devastating effects on metabolism, growth, and development of plants. Rice, a major cereal crop, is sensitive to low and high temperature stresses. The optimal temperature for the rice cultivation is 25–35 °C, and temperature below or higher than optimal negatively affects the growth, physiology, and yield of crop. High temperature (>35 °C) negatively affects the growth of roots and shoots, hampers pollination, causes poor anther dehiscence, and leads to spikelet sterility. However, the responses of rice to high temperature stress vary with the extent of temperature increase and its duration. Likewise, low temperature (<20 °C) delays rice germination and seedling establishment, hampers tiller formation, affects flowering, causes panicle sterility, and finally leads to lower grain yield. In this chapter, we summarized the studies regarding the effect of temperature extremes (heat and cold) on different growth stages of rice, and discussed the possible strategies and opportunities for improving the rice tolerance to heat and cold stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed N, Maekawa M, Tetlow IJ (2008) Effect of low temperature on grain filling, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Aust J Agric Res 59:599–604

    CAS  Google Scholar 

  • Ali MG, Naylor REL, Matthews S (2006) Distinguishing the effects of genotype and seed physiological age on low temperature tolerance of rice (Oryza sativa L.). Exp Agric 42(3):337–349

    Google Scholar 

  • Alvarado R, Hernaiz S (2007) Antecedentes generales sobreel arroz en Chile. En: Alvarado R (ed), Arroz. Manejo tecnológico. Boletín INIA N° 162. Instituto de Investigaciones Agropecuarias INIA, Centro Regional de Investigación Quilamapu, Chillán, 179 p

    Google Scholar 

  • Andaya VC, Mackill DJ (2003) QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica x indica cross. Theor Appl Genet 106:1084–1090

    CAS  PubMed  Google Scholar 

  • Anderson MD, Prasad TK, Martin BA, Stewart CR (1994) Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol 105(1):331–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad MS, Farooq M, Asch F, Krishna JS, Prasad PV, Siddique KH (2017) Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol Bioch 115:57–72

    CAS  PubMed  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    CAS  Google Scholar 

  • Asian Development Bank (ADB) (2009) The economics of climate change in Southeast Asia: a regional review. Manila, The Philippines

    Google Scholar 

  • Baker JT, Allen LHJ (1993) Effects of CO2 and temperature on rice: a summary of five growing seasons. J Agric Meteorol 48:575–582

    Google Scholar 

  • Baruah AR, Ishigo-Oka N, Adachi M, Oguma Y, Tokizono Y, Onishi K, Sano Y (2009) Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica 165(3):459–470

    Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci 101:47–56

    CAS  Google Scholar 

  • Burhan A, Rasul G, Qadir T, Hussain S, Saqib M, Bukhari SAA (2017) Environmental policies to protect pollinators: attributes and actions needed to avert climate borne crisis of oil seed agriculture in Pakistan. AIMS Agric Food 2(3):233–250

    Google Scholar 

  • Cao YY, Zhao H (2008) Protective roles of brassinolide on rice seedlings under high temperature stress. Rice Sci 15:63–68

    Google Scholar 

  • Cao YY, Duan H, Yang LN, Wang ZQ, Zhuo SC, Yang JC (2008) Effective heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agron Sin 34:2134–2142

    Google Scholar 

  • Chen SN, Zou XJ, Liang B (1997) Electron microscope observation on membrane system of leaf cells of some varieties of rice seedlings with different cold-resistance. Plant Physiol Commun 33(3):191–194. In Chinese

    CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Krishnan P, Nayak M, Ramakrishnan B (2014) High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot 101:36–46

    Google Scholar 

  • Dawe D (2008) Agricultural research, poverty alleviation, and key trends in Asia’s rice economy. In: Charting new pathways to C4 rice. pp 37–53

    Google Scholar 

  • Dias PMB, Brunel-Muguet S, Durr C, Huguet T, Demilly D, Wagner MH, Teulat-Merah B (2011) QTL analysis of seed germination and pre-emergence growth at extreme temperature in Medicago truncatula. Theor Appl Genet 122:429–444

    PubMed  Google Scholar 

  • Djanaguiraman M, Sheeba JA, Devi DD, Bangarusamy U (2009) Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defense system. J Agron Crop Sci 195:213–224

    CAS  Google Scholar 

  • Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M (2009) High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol 50:1911–1922

    CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921

    Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016) Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Front Plant Sci 7:1250

    PubMed  PubMed Central  Google Scholar 

  • FAO (2008) Food and agriculture statistics global outlook. Food and Agricultural Organization of the United Nations. http://faostat.fao.org/Portals/_Faostat/documents/pdf/world.pdf

  • Farooq M, Basra SM, Wahid A, Khaliq A, Kobayashi N (2009) Rice seed invigoration: a review. In: Organic farming, pest control and remediation of soil pollutants. Springer Dordrecht, pp 137–175

    Google Scholar 

  • Farrell TC, Fox KM, Williams RL, Fukai S (2006a) Genotypic variation for cold tolerance during reproductive development in rice: screening with cold air and cold water. Field Crops Res 98:178–194. https://doi.org/10.1016/j.fcr.2006.01.003

    Article  Google Scholar 

  • Farrell TC, Fox KM, Williams RL, Fukai S, Lewin LG (2006b) Minimising cold damage during reproductive development among temperate rice genotypes. II. Genotypic variation and flowering traits related to cold tolerance screening. Aust J Agric Res 57:89–100

    Google Scholar 

  • Feng Z, Guo A, Feng Z (2003) Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regul 39(3):277–83

    Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin S, Yano M (2004a) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T et al (2004b) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108(5):794–799

    CAS  PubMed  Google Scholar 

  • Ghadirnezhad R, Fallah A (2014) Temperature effect on yield and yield components of different rice cultivars in flowering stage. Int J Agron. Article ID 846707, 4 p. https://doi.org/10.1155/2014/846707

    Google Scholar 

  • Grass L, Burris JS (1995) Effect of heat stress during seeds development and maturation on wheat (Triticum durum) seed quality 1 Seed germination and seedling vigors. Can J Plant Sci 75:821–829

    Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitisvinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35:1050–1064

    PubMed  Google Scholar 

  • Han LZ, Kou HJ, Piao ZZ (2002) Status and prospects of genetic and QTLs analysis for cold tolerance in rice. Chin J Rice Sci 16(2):193–198

    Google Scholar 

  • Hatfield JL, Prueger JH (2011) Agroecology: implications for plant response to climate change. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds). Wiley-Blackwell, West Sussex, pp 27–43

    Google Scholar 

  • Hatfield JL, Boote KJ, Fay P, Hahn L, Izaurralde RC, Kimball BA, Mader T, Morgan J, Ort D, Polley W, Thomson A, Wolfe D (2008) Agriculture. In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States

    Google Scholar 

  • Hirano HY, Sano Y (1998) Enhancement of Wx gene expression and the accumulation of amylose in the response to cool temperatures during seed development in rice. Plant Cell Physiol 39:807–812

    CAS  Google Scholar 

  • Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB (2009) Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. J Cereal Sci 49:12–23

    CAS  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016a) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116

    PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016b) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439

    PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    PubMed  PubMed Central  Google Scholar 

  • Inouchi N, Ando H, Asaoka M, Okuno K, Fuwa H (2000) The effect of environmental temperature on distribution of unit chains of rice amylopectin. Starch 52:8–12

    CAS  Google Scholar 

  • IPCC Climate Change (2014) Mitigation of climate change working group III contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Ito S, Hara T, Kawanami Y, Watanabe T, Thiraporn K, Ohtake N, Sueyoshi K, Mitsui T, Fukuyama T, Takahashi Y, Sato T, Sato A, Ohyama T (2009) Carbon and nitrogen transport during grain filling in rice under high-temperature conditions. J Agron Crop Sci 195:368–376

    CAS  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice. J Exp Bot 58:1627–1635

    CAS  PubMed  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice (Oryza sativa L.) for heat tolerance during anthesis. Crop Sci 48:1140–1146

    Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennet J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    CAS  PubMed  Google Scholar 

  • Janda Т, Szalai G, Kissimon J, Paldi E, Marton C, Szigeti Z (1994) Role of irradiance in the chilling injury of young maize plants studied by chlorophyll fluorescence induction measurements. Photosynthetica 30:293–299

    CAS  Google Scholar 

  • Jena KK, Kim SM, Suh JP, Yang CI, Kim YJ (2012) Identification of cold-tolerant breeding lines by quantitative trait loci associated with cold tolerance in rice. Crop Sci 51(2):517–523

    Google Scholar 

  • Jouve L, Engelmann F, Noirot M, Charrier A (1993) Evaluation of biochemical markers (sugar, proline, malonedialdehyde and ethylene) for cold sensitivity in microcuttings of two coffee species. Plant Sci 91:109–116

    CAS  Google Scholar 

  • Kaniuga Z, Zabek J, Sochanoeicz B (1979) Photosynthetic apparatus in chilling-sensitive plants. Contribution of loosely bound manganese to the mechanism of reversible inactivation of Hill reaction activity following cold and dark storage and illumination of leaves. Planta 144:490–502

    Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66(5):445–462

    CAS  PubMed  Google Scholar 

  • Kim HY, Horie T, Nakagawa H, Wada K (1996) Effects of elevated CO2 concentration and high temperature on growth and yield of rice, In: the effect on development, dry matter production and some growth characteristics. Jpn J Crop Sci 65:634–643

    CAS  Google Scholar 

  • Kim SJ, Lee SC, Hong SK, An K, An G, Kim SR (2009) Ectopic expression of a cold responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol Cells 27(4):449–458

    CAS  PubMed  Google Scholar 

  • Kim SH, Choi H-S, Cho Y-C, Kim SR (2011) Cold-responsive regulation of a flower-preferential class III peroxidase gene, OsPOX1, in Rice (Oryza sativa L.). J Plant Biol 55(2):123–131

    Google Scholar 

  • Kim SI, Kim DM, Tai TH (2012) Evaluation of rice seedling tolerance to constant and intermittent low temperature stress. Rice Sci 19(4):295–308

    Google Scholar 

  • Koike S, Takeda K, Satake T (1990) Comparison of cold tolerance between isogenic pairs differing in grain size. Rice Genet Newslett 7:133–134

    Google Scholar 

  • Krishnan P, Ramakrishnan B, Raja Reddy K, Reddy VR (2011) High temperature effects on rice growth, yield, and grain quality. In: Sparks DL (ed) Advances in agronomy, vol 111. Academic, Burlington, pp 87–206

    Google Scholar 

  • Kropff MJ, Mathews RB, Van Laar HH, Ten Berge HFM (1995) The rice model Oryza 1 and its testing. In: Mathews RB, Kropff MJ, Bachelet D, van Laar HH (eds) Modeling the impact of climate change on rice production in Asia. CABI & IRRI, Wallingford, Oxon, and Los Banos, pp 27–50

    Google Scholar 

  • Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y (2007) A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor Appl Genet 115:593–600

    PubMed  Google Scholar 

  • Li P, Liu HX, Wang YR, Liang CY, Guo ZY (1990) Effect of chilling on photosynthesis in flag leaves at primary heading stage of F1 hybrid rice cultivars and their parental lines (three lines). Acta Bot Sin 32(6):456–464. In Chinese

    Google Scholar 

  • Li XG, Wang XM, Meng QW, Zou Q (2004) Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica 42(2):257–262

    CAS  Google Scholar 

  • Lin CJ, Li CY, Lin SK, Yang FH, Huang JJ, Liu YH, Lur HS (2010) Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem 58:10545–10552

    CAS  PubMed  Google Scholar 

  • Lou QJ, Chen L, Sun ZX, Xing YZ, Li J, Xu XY, Mei HW, Luo LJ (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158:87–94

    CAS  Google Scholar 

  • Lu C, Zou J, Ikehash H (1999) Spikelet fertility affected by low temperature in indica-japonica hybrids of rice (Oryza sativa L.). Jpn J Trop Agric 43:254–259

    Google Scholar 

  • Lurie S, Ronen R, Meier S (1994) Determining chilling injury induction in green peppers using nondestructive pulse amplitude modulated (PAM) fluorometry. J Am Soc Hortic Sci 119(1):59–62

    Google Scholar 

  • Lyons JM, Raison JK, Steponkus PL (1979) The plant membrane in response to low temperature: an overview. In: Low temperature stress in crop plants: the role of the membrane. New York, pp 1–24

    Google Scholar 

  • Mamun EA, Alfred S, Cantrill LC, Overall RL, Sutton BG (2006) Effects of chilling on male gametophyte development in rice. Cell Biol Int 30:583–591

    CAS  PubMed  Google Scholar 

  • Marchand FL, Mertens S, Kockelbergh F, Beyens L, Nijs I (2005) Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob Chang Biol 11:2078–2089

    Google Scholar 

  • Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89:683–687

    PubMed  PubMed Central  Google Scholar 

  • Matsui T, Omasa K, Horie T (2000) High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci 3:430–434

    Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seeds technology and its biological basis. Sheffield Academic Press Ltd, Sheffield, pp 287–325

    Google Scholar 

  • Mitsui T, Shiraya T, Kaneko K, Wada K (2013) Proteomics of rice grain under high temperature stress. Front Plant Sci 4:1–5

    Google Scholar 

  • Mohammed AR, Tarpley L (2009) Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Sci 49:313–325

    Google Scholar 

  • Morales D, Rodriguez P, Dellamico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208

    Google Scholar 

  • Morita S, Shiratsuchi H, Takanashi JI, Fujita K (2004) Effect of high temperature on grain ripening in rice plants: analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Jpn J Crop Sci 73:77–83

    Google Scholar 

  • Morita S, Yonemaru JI, Takanashi JI (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95:695–701

    PubMed  PubMed Central  Google Scholar 

  • Munro KD, Hodges DM, DeLong JM, Forney CF, Kristie DN (2004) Low temperature effects on ubiquinone content, respiration rates and lipid peroxidation levels of etiolated seedlings of two differentially chilling-sensitive species. Physiol Plant 121(3):488–497

    CAS  Google Scholar 

  • Nakagahra M, Okuno K, Vaughan D (1997) Rice genetic resources: history, conservation, investigative characterization and use in Japan. Plant Mol Biol 35:69–77

    CAS  PubMed  Google Scholar 

  • Oh-e I, Saitoh K, Kuroda T (2007) Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Prod Sci 10:412–422

    Google Scholar 

  • Oliver SN, Van Dongen JT, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P, Dennis ES, Dolferus R (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ 28:1534–1551

    CAS  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    CAS  PubMed  Google Scholar 

  • Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yield decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr (2006a) Adverse high temperature effects on pollen viability, seed-set, seed yield, and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr, Sheehy JE, Thomas JMG (2006b) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Google Scholar 

  • Reyes BG, Myers SJ, McGrath JM (2003) Differential induction of glyoxylate cycle enzymes by stress as a marker for seedling vigor in sugar beet (Beta vulgaris). Mol Genet Genomics 269:692–698

    PubMed  Google Scholar 

  • Ribascarbo M, Aroca R, Gonzalez-Meler MA, Irigoyen JJ, Sanchezdiaz M (2000) The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in 2 cultivars of maize differing in chilling sensitivity. Plant Physiol 122(1):199–204

    CAS  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apl 22:1–10

    Google Scholar 

  • Saito K, Miura K, Nagano K, Hayano-Saito Y, Araki H, Kato A (2001) Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet 103(6–7):862–8

    CAS  Google Scholar 

  • Satake T (1976) Determination of the most sensitive stage to sterile-type cool injury in rice plants. Res Bull Hokkaido Natl Agric Exp Stn 113:1–33

    Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low temperature response in plants. Bioessays 27(10):1048–1059

    CAS  PubMed  Google Scholar 

  • Shimono H, Hasegawa T, Iwama K (2002) Response of growth and grain yield in paddy rice to cool water at different growth stages. Field Crop Res 73:67–79

    Google Scholar 

  • Shrestha S, Asch F, Brueck H, Giese M, Dusserre J, Ramanantsoanirina A (2013) Phenological responses of upland rice grown along an altitudinal gradient. Environ Exp Bot 89:1–10

    Google Scholar 

  • Singh RP, Brennan JP, Farrell T, Williams R, Reinke R, Lewin L, Mullen J (2005) Economic analysis of breeding for improved cold tolerance in rice in Australia. Australas Agribus Rev 13:1–9

    Google Scholar 

  • Soleymani A, Shahrajabian MH (2012) Study of cold stress on the germination and seedling stage and determination of recovery in rice varieties. Int J Biol 4(4):23. https://doi.org/10.5539/ijb.v4n4p23

    Article  Google Scholar 

  • Southworth J, Randolph J, Harbeck M, Doering O, Pfeifer R, Rao D, Johnston J (2000) Consequences of future climate change and changing climate variability on maize yields in the Midwestern United States. Agric Ecosyst Environ 82:139–158

    Google Scholar 

  • Spiertz JHR, Hamer RJ, Xu H, Primo-Martin C, Don C, Van der Putten PE (2006) Heat stress in wheat (Triticum aestivum L.): effect on grain growth and quality traits. Eur J Agron 25:89–95

    CAS  Google Scholar 

  • Suh JP, Jeung JU, Lee JI, Choi YH, Yea JD, Virk PS, Mackill DJ, Jena KK (2010) Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor Appl Genet 120:985–995

    CAS  PubMed  Google Scholar 

  • Sumesh KV, Sharma-Natu P, Ghildiyal MC (2008) Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biol Plant 52:749–753

    CAS  Google Scholar 

  • Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimano T, Yamagishi M, Nagano K, Sasakiand T, Yano M (2001) Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breed Sci 51:191–197

    CAS  Google Scholar 

  • Tang RS, Zheng JC, Jin ZQ, Zhang DD, Huang YH, Chen LG (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul 54:37–43

    CAS  Google Scholar 

  • Tashiro T, Wardlaw IF (1991) Effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust J Agric Res 42:485–496

    Google Scholar 

  • Tenorio FA, Ye C, Redoña E, Sierra S, Laza M, Argayoso MA (2013) Screening rice genetic resources for heat tolerance. SABRAO J Breed Genet 45:371–381

    Google Scholar 

  • Umemoto T, Nakamura Y, Ishikura N (1995) Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry 40:1613–1616

    CAS  Google Scholar 

  • Van Heerden PDR, Kruger GHJ, Loveland JE, Parry MAJ, Foyer CH (2002) Dark chilling imposes metabolic restrictions on photosynthesis in soybean. Plant Cell Environ 26(2):323–337

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang JZ, Cui LJ, Wang Y, Li JL (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:247–242

    Google Scholar 

  • Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S, Huang J, Cui K, Nie L (2016) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6:19637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weeden NF, Buchanan BB (1983) Leaf cytosolic fructose-1, 6-bisphosphatase-A potential targets in low temperature stress. Plant Physiol 72:259–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CC, Li L, Kuang T (2000) Photoprotection in chilling-sensitive and-resistant plants illuminated at a chilling temperature: role of the xanthophyll cycle in the protection against lumen acidification. Funct Plant Biol 27(7):669–75

    CAS  Google Scholar 

  • Yamamoto Y, Tamori T, Kawaguchi S (1985) Relations between weather and growth of rice plant. I. Effects of air-temperature on the growth of rice plant in the first half stage. Bull Toyama Agric Exp Stn 16:20–26

    Google Scholar 

  • Yang X, Chen X, Ge Q, Li B, Tong Y, Zhang A, Li Z, Kuang T, Lu C (2006) Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci 171:389–397

    CAS  PubMed  Google Scholar 

  • Yin X, Kroff MJ, Goudriann J (1996) Differential effects of day and night temperature on development to flowering in rice. Ann Bot 77:203–213

    Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    CAS  PubMed  Google Scholar 

  • Zeng NY, He JX, Zhao W, Liang HG (2000) Changes in components of pigments and proteins in rice photosynthetic membrane during chilling stress. Acta Botan Boreali-Occiden Sin 20(1):8–14. In Chinese

    CAS  Google Scholar 

  • Zhang H, Duan L, Dai JS, Zhang CQ, Li J, Gu MH, Liu QQ, Zhu Y (2014a) Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA. Theor Appl Genet 127:273–282

    CAS  PubMed  Google Scholar 

  • Zhang Q, Chen Q, Wang S, Hong Y, Wang Z (2014b) Rice and cold stress, in rice: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice 7:1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saddam Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S., Khaliq, A., Ali, B., Hussain, H.A., Qadir, T., Hussain, S. (2019). Temperature Extremes: Impact on Rice Growth and Development. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_6

Download citation

Publish with us

Policies and ethics