Skip to main content

Fishes and Connectivity of Red Sea Coral Reefs

  • Chapter
  • First Online:
Coral Reefs of the Red Sea

Abstract

The coral reefs of the Red Sea are host to a diverse fish fauna. Ichthyofauna studies began in the Red Sea during expeditions undertaken by some of the earliest European naturalists. In the more than 200 years that have passed, much has been learned about Red Sea fishes. Nonetheless, many knowledge gaps remain. Although it is a relatively young sea, the geologic history of the Red Sea provides an interesting context for many evolutionary biology studies. The strong environmental gradients within the Red Sea and the broader Arabian region may play a role in structuring some observed biodiversity patterns, perhaps most notably in the context of high numbers of Arabian and Red Sea endemics. As such, Red Sea fishes provide ideal opportunities for connectivity studies, both based on adult movement and larval dispersal patterns. These studies are increasingly important as multiple modern “mega-developments” are planned on Red Sea shores in locations where a lack of scientific information may still hinder conservation efforts and planning for sustainable development. Coupled with increasing pressures from global climate change, each of the Red Sea countries faces unique challenges for the preservation of the rich biological resources for which their reefs are historically known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu El-Regal MA (1999) Some biological and ecological studies on the larvae of coral reef fishes in Sharm El-Sheikh (Gulf of Aqaba-Red Sea). MSc thesis. Suez Canal University, Egypt

    Google Scholar 

  • Abu El-Regal MA (2008) Ecological studies on the ichthyoplankton of coral reef fishes in Hurghada, Red Sea, Egypt. PhD thesis. Suez Canal University, Egpyt

    Google Scholar 

  • Abu El-Regal M, Kon T (2008) First record of the paedomorphic fish Schindleria (Gobioidei, Schindleriidae) from the Red Sea. J Fish Biol 72:1539–1543

    Article  Google Scholar 

  • Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237

    Article  Google Scholar 

  • Adams AJ, Dahlgren CP, Kellison GT, Kendall MS, Layman CA, Ley JA, Nagelkerken I, Serafy JE (2006) Nursery function of tropical back-reef systems. Mar Ecol Prog Ser 318:287–301

    Article  Google Scholar 

  • Aguilar-Perera A, Appeldoorn RS (2008) Spatial distribution of marine fishes along a cross-shelf gradient containing a continuum of mangrove–seagrass–coral reefs off southwestern Puerto Rico. Estuar Coast Shelf Sci 76:378–394

    Article  Google Scholar 

  • Almany GR, Planes S, Thorrold SR, Berumen ML, Bode M, Saenz-Agudelo P, Bonin MC, Frisch AJ, Harrison HB, Messmer V, Nanninga GB, Priest MA, Srinivasan M, Sinclair-Taylor T, Williamson DH, Jones GP (2017) Larval fish dispersal in a coral reef seascape. Nat Ecol Evol 1:148

    Article  Google Scholar 

  • Azzurro E, Maynou F, Belmaker J, Golani D, Crooks JA (2016) Lag times in Lessepsian fish invasion. Biol Invasions 18:2761–2772

    Article  Google Scholar 

  • Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • Ben-Tuvia AA (1971) On the occurrence of the Mediterranean serranid fish Dicentrarchus punctatus (Bloch) in the Gulf of Suez. Am Soc Ichthyol Herpetol 1971:741–743

    Google Scholar 

  • Ben-Tzvi O, Kiflawi M, Gildor H, Abelson A (2007) Possible effects of downwelling on the recruitment of coral reef fishes to the Eilat (Red Sea) coral reefs. Limnol Oceanogr 52:2618–2628

    Article  Google Scholar 

  • Ben-Tzvi O, Kiflawi M, Gaines SD, Al-Zibdah M, Sheehy MS, Paradis GL, Abelson A (2008) Tracking recruitment pathways of Chromis viridis in the Gulf of Aqaba using otolith chemistry. Mar Ecol Prog Ser 359:229–238

    Article  Google Scholar 

  • Ben-Tzvi O, Abelson A, Gaines SD, Bernardi G, Beldade R, Sheehy MS, Paradis GL, Kiflawi M (2012) Evidence for cohesive dispersal in the sea. PLoS One 7:e42672

    Google Scholar 

  • Bernardi G, Azzurro E, Golani D, Miller MR (2016) Genomic signatures of rapid adaptive evolution in the bluespotted cornetfish, a Mediterranean Lessepsian invader. Mol Ecol 25:3384–3396

    Article  CAS  Google Scholar 

  • Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JE, Khalil MT, Miyake S, Mughal MR, Spät JL, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748

    Article  Google Scholar 

  • Berumen ML, Braun CD, Cochran JE, Skomal GB, Thorrold SR (2014) Movement patterns of juvenile whale sharks tagged at an aggregation site in the Red Sea. PLoS One 9:e103536

    Article  CAS  Google Scholar 

  • Berumen ML, DiBattista JD, Rocha LA (2017) Introduction to virtual issue on Red Sea and Western Indian Ocean biogeography. J Biogeogr 44:1923–1926

    Article  Google Scholar 

  • Booth DJ, Bond N, Macreadie P (2011) Detecting range shifts among Australian fishes in response to climate change. Mar Freshw Res 62:1027–1042

    Article  Google Scholar 

  • Borman A, Wood TR, Black HC, Anderson EG, Oesterling MJ, Womack M, Rose WC (1946) The role of arginine in growth with some observations on the effects of argininic acid. J Biol Chem 166:585–594

    CAS  Google Scholar 

  • Bouillon S, Raman AV, Dauby P, Dehairs F (2002) Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar Coast Shelf Sci 54:901–913

    Article  CAS  Google Scholar 

  • Bowen BW, Rocha LA, Toonen RJ, Karl SA, ToBo Laboratory (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28:359–366

    Article  Google Scholar 

  • Braun CD, Skomal GB, Thorrold SR, Berumen ML (2014) Diving behavior of the reef manta ray links coral reefs with adjacent deep pelagic habitats. PLoS One 9:e88170

    Article  CAS  Google Scholar 

  • Braun CD, Skomal GB, Thorrold SR, Berumen ML (2015) Movements of the reef manta ray (Manta alfredi) in the Red Sea using satellite and acoustic telemetry. Mar Biol 162:2351–2362

    Article  Google Scholar 

  • Brokovich E, Einbinder S, Kark S, Shashar N, Kiflawi M (2007) A deep nursery for juveniles of the zebra angelfish Genicanthus caudovittatus. Environ Biol Fish 80:1–6

    Article  Google Scholar 

  • Brokovich E, Einbinder S, Shashar N, Kiflawi M, Kark S (2008) Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m. Mar Ecol Prog Ser 371:253–262

    Article  Google Scholar 

  • Brokovich E, Ayalon I, Einbinder S, Segev N, Shaked Y, Genin A, Kark S, Kiflawi M (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 399:69–80

    Google Scholar 

  • Bruckner A, Rowlands G, Riegl B, Purkis S, Williams A, Renaud P (2011) Khaled bin Sultan Living Oceans Foundation Atlas of Saudi Arabian Red Sea Marine Habitats. Panoramic Press, Phoenix

    Google Scholar 

  • Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38

    Article  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Article  CAS  Google Scholar 

  • Catlin J, Jones R (2010) Whale shark tourism at Ningaloo Marine Park: a longitudinal study of wildlife tourism. Tour Manag 31:386–394

    Article  Google Scholar 

  • Chekchak T (2013) Toward a sustainable future for the Red Sea coast of Sudan. Part 2: socio-economic and governance survey. Cousteau Society, New York

    Google Scholar 

  • Chekchak T, Klaus R (2013) Toward a sustainable future for the Red Sea coast of Sudan. Part 1: coastal and marine habitats survey. Cousteau Society, New York

    Google Scholar 

  • Clements KD, German DP, Piché J, Tribollet A, Choat JH (2016) Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linnean Soc 120:729–751

    Google Scholar 

  • Cocheret de la Moriniére E, Ollux BJA, Nagelkerken I, van der Velde G (2002) Postsettlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar Coast Shelf Sci 55:309–321

    Article  Google Scholar 

  • Cochran JEM, Hardenstine RS, Braun CD, Skomal GB, Thorrold SR, Xu K, Genton MG, Berumen ML (2016) Population structure of a whale shark Rhincodon typus aggregation in the Red Sea. J Fish Biol 89:1570–1582

    Article  CAS  Google Scholar 

  • Coker DJ, DiBattista JD, Sinclair-Taylor TH, Berumen ML (2018) Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea. Coral Reefs 37:193–199

    Article  Google Scholar 

  • Coleman RR, Eble JA, DiBattista JD, Rocha LA, Randall JE, Berumen ML, Bowen BW (2016) Regal phylogeography: range-wide survey of the marine angelfish Pygoplites diacanthus reveals evolutionary partitions between the Red Sea, Indian Ocean, and Pacific Ocean. Mol Phylogenet Evol 100:243–253

    Article  Google Scholar 

  • Copland JW, Grey DL (1987) Management of wild and cultured sea bass / barramundi (Lates calcarifer): proceedings of an international workshop held at Darwin, N.T., Australia, 24–30 September 1986. ACIAR Proceedings No. 20, Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Depczynski M, Bellwood DR (2003) The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar Ecol Prog Ser 256:183–191

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2006) Extremes, plasticity, and invariance in vertebrate life history traits: insights from coral reef fishes. Ecology 87:3119–3127

    Article  Google Scholar 

  • Depczynski M, Fulton CJ, Marnane MJ, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120

    Article  Google Scholar 

  • Desalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Cons Biol 20:1545–1547

    Article  Google Scholar 

  • DiBattista JD, Berumen ML, Gaither MR, Rocha LA, Eble JA, Choat JH, Craig MT, Skillings DJ, Bowen BW (2013) After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. J Biogeogr 40:1170–1181

    Article  Google Scholar 

  • DiBattista JD, Choat JH, Gaither MR, Hobbs JPA, Lozano-Cortés DF, Myers RF, Paulay G, Rocha LA, Toonen RJ, Westneat MW, Berumen ML (2016a) On the origin of endemic species in the Red Sea. J Biogeogr 43:13–30

    Article  Google Scholar 

  • DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF, Choat JH, Gaither MR, Hobbs JPA, Khalil MT, Kochzius M, Myers RF, Paulay G, Robitzch VSN, Saenz-Agudelo P, Salas E, Sinclair-Taylor T, Toonen RJ, Westneat MW, Williams ST, Berumen ML (2016b) A review of contemporary patterns of endemism in the Red Sea. J Biogeogr 43:423–439

    Google Scholar 

  • DiBattista JD, Gaither MR, Hobbs J-PA, Saenz-Agudelo P, Piatek MJ, Bowen BW, Rocha LA, Choat JH, McIlwain JH, Priest MA, Sinclair-Taylor T, Berumen ML (2017) Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages. Coral Reefs 36:625–638

    Article  Google Scholar 

  • Docmac F, Araya M, Hinojosa IA, Dorador C, Harrod C (2017) Habitat coupling writ large: pelagic-derived materials fuel benthivorous macroalgal reef fishes in an upwelling zone. Ecology 98:2267–2272

    Article  Google Scholar 

  • Dromard CR, Bouchon-Navaro Y, Cordonnier S, Fontaine MF, Verlaque M, Harmelin-Vivien M, Bouchon C (2013) Resource use of two damselfishes, Stegastes planifrons and Stegastes adustus, on Guadeloupean reefs (Lesser Antilles): inference from stomach content and stable isotope analysis. J Exp Mar Biol Ecol 440:116–125

    Article  Google Scholar 

  • Edwards FJ (1987) Climate and oceanography. In: Edwards AJ, Head SM (eds) Red Sea – (Key environments). Pergamon Books Ltd, Exeter, pp 45–69

    Chapter  Google Scholar 

  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol Annu Rev 46:297–330

    Google Scholar 

  • Emms MA (2015) Broad-scale population genetics of the host sea anemone, Heteractis magnifica. MSc thesis. King Abdullah University of Science and Technology, Saudi Arabia

    Google Scholar 

  • Fernandez-Silva I, Randall JE, Coleman RR, DiBattista JD, Rocha LA, Reimer JD, Meyer CG, Bowen BW (2015) Yellow tails in the Red Sea: phylogeography of the Indo-Pacific goatfish Mulloidichthys flavolineatus reveals isolation in peripheral provinces and cryptic evolutionary lineages. J Biogeogr 42:2402–2413

    Google Scholar 

  • Fernandez-Silva I, Randall JE, Golani D, Bogorodsky SV (2016) Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall (Perciformes, Mullidae), a new subspecies of goatfish from the Red Sea and Arabian Sea. ZooKeys 605:131–157

    Google Scholar 

  • Fricke R, Abu El-Regal M (2017a) Schindleria elongata, a new species of paedomorphic gobioid from the Red Sea (Teleostei: Schindleriidae). J Fish Biol 90:1883–1890

    Article  CAS  Google Scholar 

  • Fricke R, Abu El-Regal MA (2017b) Schindleria nigropunctata, a new species of paedomorphic gobioid fish from the Red Sea (Teleostei: Schindleriidae). Mar Biodivers:1–5. https://doi.org/10.1007/s12526-017-0831-z

  • Fricke HW, Hottinger L (1983) Coral bioherms below the euphotic zone in the Red Sea. Mar Ecol Prog Ser 11:113–117

    Article  Google Scholar 

  • Fricke HW, Knauer B (1986) Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone. Oecologia 71:29–37

    Article  CAS  Google Scholar 

  • Fricke HW, Schuhmacher H (1983) The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol 4:163–194

    Article  Google Scholar 

  • Froukh TJ (2001) Studies on taxonomy and ecology of some fish larvae from the Gulf of Aqaba. MSc thesis. University of Jordan, Jordan

    Google Scholar 

  • Furby KA, Bouwmeester J, Berumen ML (2013) Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32:505–513

    Article  Google Scholar 

  • Galil BS, Boero F, Campbell ML, Carlton JT, Cook E, Fraschetti S, Gollasch S, Hewitt CL, Jelmert A, Macpherson E, Marchini A, McKenzie C, Minchin D, Occhipinti-Ambrogi A, Ojaveer H, Olenin S, Piraino S, Ruiz GM (2015) “Double trouble”: the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol Invasions 17:973–976

    Article  Google Scholar 

  • Giles EC, Saenz-Agudelo P, Hussey NE, Ravasi T, Berumen ML (2015) Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecol Evol 5:2487–2502

    Article  Google Scholar 

  • Gladstone W (1996) Unique annual aggregation of longnose parrotfish (Hipposcarus harid) at Farasan Island (Saudi Arabia, Red Sea). Copeia 1996:483–485

    Article  Google Scholar 

  • Gladstone W (2000) The ecological and social basis for management of a Red Sea marine-protected area. Ocean Coast Manag 43:1015–1032

    Article  Google Scholar 

  • Goatley CH, Brandl SJ (2017) Cryptobenthic reef fishes. Curr Biol 27:R452–R454

    Article  CAS  Google Scholar 

  • Golani D (1998) Impact of Red Sea fish migrants through the Suez Canal on the aquatic environment of the eastern Mediterranean. Yale F&ES Bull 103:375–387

    Google Scholar 

  • Golani D (1999) The Gulf of Suez ichthyofauna-assemblage pool for Lessepsian migration into the Mediterranean. Isr J Zool 45:79–90

    Google Scholar 

  • Golani D, Appelbaum-Golani B (2010) Fish invasions of the Mediterranean Sea: change and renewal. Coronet Books Incorporated, Philadelphia

    Google Scholar 

  • Golani D, Bogorodsky S (2010) The fishes of the Red Sea – reappraisal and updated checklist. Zootaxa 2463:1–135

    Article  Google Scholar 

  • Golani D, Massutí E, Quignard J-P, Dulcic J, Azzurro E (2017) CIESM atlas of exotic fishes in the Mediterranean. http://www.ciesm.org/atlas/appendix 1.html

    Google Scholar 

  • Goren M, Galil BS (2005) A review of changes in the fish assemblages of Levantine inland and marine ecosystems following the introduction of non-native fishes. J Appl Ichthyol 21:364–370

    Article  Google Scholar 

  • Green AL, Maypa AP, Almany GR, Rhodes KL, Weeks R, Abesamis RA, Gleason MG, Mumby PH, White AT (2015) Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol Rev 90:1215–1247

    Article  Google Scholar 

  • Gudger EW (1938) Four whale sharks rammed by steamers in the Red Sea region. Copeia 1938(4):170–173

    Article  Google Scholar 

  • Gudger EW (1940) Whale sharks rammed by ocean vessels: how these sluggish leviathans aid in their own destruction. New Engl Nat 7:1–10

    Google Scholar 

  • Hansen T (1962) Det Lykkelige Arabien. Gyldendal, Copenhagen. Based on a 1964 translation published as: Arabia Felix: the Danish expedition of 1761–1767. Wm. Collins Sons & Co. Ltd, Glasgow

    Google Scholar 

  • Hanson JM, Chouinard GA (2002) Diet of Atlantic cod in the southern gulf of St Lawrence as an index of ecosystem change, 1959–2000. J Fish Biol 60:902–922

    Google Scholar 

  • Hare PE, Fogel ML, Stafford TW, Mitchell AD, Hoering TC (1991) The isotopic composition of carbon and nitrogen in individual amino-acids isolated from modern and fossil proteins. J Archaeol Sci 18:277–292

    Article  Google Scholar 

  • Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, Van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028

    Article  CAS  Google Scholar 

  • Herler J (2007) Microhabitats and ecomorphology of coral-and coral rock-associated gobiid fish (Teleostei: Gobiidae) in the northern Red Sea. Mar Ecol 28:82–94

    Article  Google Scholar 

  • Herler J, Hilgers H (2007) A synopsis of coral and coral-rock associated gobies (Pisces: Gobiidae) from the Gulf of Aqaba, northern Red Sea. Aqua J Ichthyol Aquat Biol 10:103–132

    Google Scholar 

  • Hernaman V, Munday P (2005) Life-history characteristics of coral reef gobies. I. Growth and life-span. Mar Ecol Prog Ser 290:207–221

    Article  Google Scholar 

  • Hernaman V, Munday P (2007) Evolution of mating systems in coral reef gobies and constraints on mating system plasticity. Coral Reefs 26:585–595

    Article  Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management”. Coral Reefs 29:247–251

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hozumi A (2015) Environmental factors affecting the whale shark aggregation site in the south central Red Sea. PhD thesis. King Abdullah University of Science and Technology, Saudi Arabia

    Google Scholar 

  • Hussey NE, Stroh N, Klaus R, Chekchak T, Kessel ST (2013) SCUBA diver observations and placard tags to monitor grey reef sharks, Carcharhinus amblyrhynchos, at Sha’ab Rumi, the Sudan: assessment and future directions. J Mar Biol Assoc UK 93:299–308

    Article  Google Scholar 

  • Isari S, Pearman JK, Casas L, Michell CT, Curdia J, Berumen ML, Irigoien X (2017a) Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach. PLoS One 12:e0182503

    Article  CAS  Google Scholar 

  • Isari S, Pearman JK, Casas L, Michell CT, Curdia J, Berumen ML, Irigoien X (2017b) Integrating morphology and genetics to study the larval community of gobies in the central Arabian Red Sea. Abstracts from the 10th Indo-Pacific Fish Conference, Tahiti, French Polynesia. p83

    Google Scholar 

  • Jin D, Kite-Powell H, Hoagland P, Solow A (2012) A bioeconomic analysis of traditional fisheries in the Red Sea. Mar Resour Econ 27:137–148

    Article  Google Scholar 

  • Johansen J, Jones G (2011) Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Glob Chang Biol 17:2971–2979

    Article  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Kalish JM (1991) δ13C and δ18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar Ecol Prog Ser 75:191–203

    Article  Google Scholar 

  • Kattan A, Coker DJ, Berumen ML (2017) Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure. Mar Biodivers 47:1227–1238

    Article  Google Scholar 

  • Kennedy BP, Klaue A, Blum JD, Folt CL, Nislow KH (2002) Reconstructing the lives of fish using Sr isotopes in otoliths. Can J Fish Aquat Sci 59:925–929

    Article  Google Scholar 

  • Kessel ST, Elamin NA, Yurkowski DJ, Chekchak T, Walter RP, Klaus R, Hill G, Hussey NE (2017) Conservation of reef manta rays (Manta alfredi) in a UNESCO world heritage site: large-scale island development or sustainable tourism? PLoS One 12:e0185419

    Article  CAS  Google Scholar 

  • Khalaf MA, Kochzius M (1992) Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea. Helgol Mar Res 55:252–284

    Article  Google Scholar 

  • Khalil MT, Bouwmeester J, Berumen ML (2017) Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea. PeerJ 5:e3410

    Article  Google Scholar 

  • Kieckbusch DK, Koch MS, Serafy JE, Anderson WT (2004) Trophic linkages among primary producers and consumers in fringing mangroves of subtropical lagoons. Bull Mar Sci 74:271–285

    Google Scholar 

  • Kimirei IA, Nagelkerken I, Trommelen M, Blankers P, Van Hoytema N, Hoeijmakers D, Huijbers CM, Mgaya YD, Rypel AL (2013) What drives ontogenetic niche shifts of fishes in coral reef ecosystems? Ecosystems 16:783–796

    Article  Google Scholar 

  • Kimmerling N, Zuqert O, Amitai G, Gurevich T, Armoza-Zvuloni R, Kolesnikov I, Berenshtein I, Melamed S, Gilad S, Benjamin S, Rivlin A, Moti O, Paris CB, Holzman R, Kiflawi M, Sorek R (2018) Quantitative species-level ecology of reef fish larvae via metabarcoding. Nat Ecol Evol 2:306–316

    Article  Google Scholar 

  • Kotb MM, Hanafy MH, Rirache H, Matsumura S, Al-Sofyani A, Ahmed A, Bawazir G, Al Horani F (2008) Status of coral reefs in the Red Sea and Gulf of Aden region. In: Wilkinson C (ed) Status of Coral Reefs of the World: 2008. Australian Institute of Marine Science, Townsville, pp 67–78

    Google Scholar 

  • Kristensen E, Lee SY, Mangion P, Quintana CO, Valdemarsen T (2017) Trophic discrimination of stable isotopes and potential food source partitioning by leaf-eating crabs in mangrove environments. Limnol Oceanogr 62:2097–2112

    Article  Google Scholar 

  • Larsen T, Taylor DL, Leigh MB, O’Brien DM (2009) Stable isotope fingerprinting: a novel method for identifying plant, fungal, or bacterial origins of amino acids. Ecology 90:3526–3535

    Article  Google Scholar 

  • Larsen T, Wooller MJ, Fogel ML, O’Brien DM (2012) Can amino acid carbon isotope ratios distinguish primary producers in a mangrove ecosystem? Rapid Commun Mass Spectrom 26:1541–1548

    Article  CAS  Google Scholar 

  • Larsen T, Ventura M, Andersen N, O’Brien DM, Piatkowski U, McCarthy MD (2013) Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS One 8:e73441

    Article  CAS  Google Scholar 

  • Layman CA (2007) What can stable isotope ratios reveal about mangroves as fish habitat? Bull Mar Sci 80:513–527

    Google Scholar 

  • Letourneur Y, De Loma TL, Richard P, Harmelin-Vivien ML, Cresson P, Banaru D, Fontaine MF, Gref T, Planes S (2013) Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32:1091–1102

    Article  Google Scholar 

  • Lieske E, Myers RT (2004) Coral Reef Guide: Red Sea. HarperCollins Publishers Ltd, London

    Google Scholar 

  • Malcolm H, Jordan A, Smith SA (2010) Biogeographical and cross-shelf patterns of reef fish assemblages in a transition zone. Mar Biodivers 40:181–193

    Article  Google Scholar 

  • Marguillier S, van der Velde G, Dehairs F, Hemminga MA, Rajagopal S (1997) Trophic relationships in an interlinked mangroveseagrass ecosystem as traced by δ13C and δ15N. Mar Ecol Prog Ser 151:115–121

    Article  CAS  Google Scholar 

  • Marshall A, Kashiwagi T, Bennett MB, Deakos M, Stevens G, McGregor F, Clark T, Ishihara H, Sato K (2011) Manta alfredi. The IUCN red list of threatened species 2011: e.T195459A8969079

    Google Scholar 

  • McCook LJ, Almany GR, Berumen ML, Day JC, Green AL, Jones GP, Leis JM, Planes S, Russ GR, Sale PF, Thorrold SR (2009) Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs. Coral Reefs 28:353–366

    Article  Google Scholar 

  • McMahon KW, Fogel ML, Johnson BJ, Houghton LA, Thorrold SR (2011a) A new method to reconstruct fish diet and movement patterns from δ13C values in otolith amino acids. Can J Fish Aquat Sci 68:1330–1340

    Article  Google Scholar 

  • McMahon KW, Berumen ML, Mateo I, Elsdon TS, Thorrold SR (2011b) Carbon isotopes in otolith amino acids identify residency of juvenile snapper (Family: Lutjanidae) in coastal nurseries. Coral Reefs 30:1135–1145

    Article  Google Scholar 

  • McMahon KW, Berumen ML, Thorrold SR (2012) Linking habitat mosaics and connectivity in a coral reef seascape. Proc Natl Acad Sci USA 109:15372–15376

    Article  Google Scholar 

  • McMahon KW, Thorrold SR, Houghton LA, Berumen ML (2016) Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180:809–821

    Article  Google Scholar 

  • Meekan M, Austin CM, Tan MH, Wei NWV, Miller A, Pierce SJ, Rowat D, Stevens G, Davies TK, Ponzo A, Gan HM (2017) iDNA at sea: recovery of whale shark (Rhincodon typus) mitochondrial DNA sequences from the whale shark copepod (Pandarus rhincodonicus) confirms global population structure. Front Mar Sci 4:420

    Article  Google Scholar 

  • Meeker ND, Hutchinson SA, Ho L, Trede NS (2007) Method for isolation of PCR-ready genomic DNA from zebrafish tissues. BioTechniques 43(5):610–614

    Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Annu Rev 8:73–202

    Google Scholar 

  • Mulcahy SA, Killingley JS, Phleger CF, Berger WH (1979) Isotopic composition of otoliths from a benthopelagic fish, Coryphaenoides acrolepis, Macrouridae: Gadiformes. Oceanol Acta 2:423–427

    CAS  Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CC (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Article  CAS  Google Scholar 

  • Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285

    Article  Google Scholar 

  • Nagelkerken I, Dorenbosch M, Verberk WCEP, Cocheret de la Moriniére E, van der Velde G (2000) Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Mar Ecol Prog Ser 202:175–192

    Article  Google Scholar 

  • Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185

    Article  Google Scholar 

  • Nanninga GB (2013) Merging approaches to explore connectivity in the anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. Ph.D. Thesis. King Abdullah University of Science and Technology, Saudi Arabia

    Google Scholar 

  • Nanninga GB, Saenz-Agudelo P, Manica A, Berumen ML (2014) Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea. Mol Ecol 23:591–602

    Article  Google Scholar 

  • Nanninga GB, Saenz-Agudelo P, Zhan P, Hoteit I, Berumen ML (2015) Not finding Nemo: limited reef-scale retention in a coral reef fish. Coral Reefs 34:383–392

    Article  Google Scholar 

  • Ngugi DK, Antunes A, Brune A, Stingl U (2012) Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea. Mol Ecol 21:388–405

    Article  CAS  Google Scholar 

  • Nowicki JP, Miller GM, Munday PL (2012) Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. J Exp Mar Biol Ecol 412:46–51

    Article  Google Scholar 

  • Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, Voolstra CR, Suggett DJ (2018) Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Chang Biol 24:e474–e484

    Article  Google Scholar 

  • Pierce SJ, Norman B (2016) Rhincodon typus. The IUCN red list of threatened species 2016: e.T19488A2365291

    Google Scholar 

  • Por FD (1978) Lessepsian migration. The influx of Red Sea biota into the Mediterranean by way of the Suez Canal. Springer Verlag, Berlin

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Pratchett MS, Munday P, Wilson SK (2008) Effects of climate-induced coral bleaching on coral-reef fishes - ecological and economical consequences. Oceanogr Mar Biol Annu Rev 46:251–296

    Google Scholar 

  • Price A, Ghazi S, Tkaczynski P, Venkatachalam A, Santillan A, Pancho T, Metcalfe R, Saunders J (2014) Shifting environmental baselines in the Red Sea. Mar Pollut Bull 78:96–101

    Article  CAS  Google Scholar 

  • Priest MA, DiBattista JD, McIlwain JL, Taylor BM, Hussey NE, Berumen ML (2016) A bridge too far: dispersal barriers and cryptic speciation in an Arabian Peninsula grouper (Cephalopholis hemistiktos). J Biogeogr 43:820–832

    Article  Google Scholar 

  • Racault MF, Raitsos DE, Berumen ML, Brewin RJW, Platt T, Sathyendranath S, Hoteit I (2015) Phytoplankton phenology indices in coral reef ecosystems: application to ocean-colour observations in the Red Sea. Remote Sens Environ 160:222–234

    Article  Google Scholar 

  • Raitsos DE, Pradhan Y, Brewin RJ, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8:e64909

    Article  CAS  Google Scholar 

  • Raitsos DE, Brewin RJW, Zhan P, Dreano D, Pradhan Y, Nanninga GB, Hoteit I (2017) Sensing coral reef connectivity pathways from space. Sci Rep 7:9338

    Article  CAS  Google Scholar 

  • Reeds PJ (2000) Dispensable and indispensable amino acids for humans. J Nutr 130:1835S–1840S

    Article  CAS  Google Scholar 

  • ReFuGe 2020 Consortium (2015) The ReFuGe 2020 consortium—using “omics” approaches to explore the adaptability and resilience of coral holobionts to environmental change. Front Mar Sci 2:68

    Google Scholar 

  • Roberts CM, Shepherd ARD, Ormond RFG (1992) Large-scale variation in assemblage structure of Red Sea butterflyfishes and angelfishes. J Biogeogr 19:239–250

    Article  Google Scholar 

  • Roberts MB, Jones GP, McCormick MI, Munday PL, Neale S, Thorrold S, Robitzch VSN, Berumen ML (2016) Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea. Mar Pollut Bull 105:558–565

    Article  CAS  Google Scholar 

  • Robinson DP, Jaidah MY, Bach SS, Rohner CA, Jabado RW, Ormond R, Pierce SJ (2017) Some like it hot: repeat migration and residency of whale sharks within an extreme natural environment. PLoS One 12:e0185360

    Article  CAS  Google Scholar 

  • Robitzch VSN (2017) The assessment of current biogeographic patterns of coral reef fishes in the Red Sea by incorporating their evolutionary and ecological background. Ph.D. Thesis. King Abdullah University of Science and Technology, Saudi Arabia

    Google Scholar 

  • Robitzch V, Banguera-Hinestroza E, Sawall Y, Al-Sofyani A, Voolstra CR (2015) Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea. Front Mar Sci 2:5

    Article  Google Scholar 

  • Robitzch VSN, Lozano-Cortés D, Kandler NM, Salas E, Berumen ML (2016) Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea. Mar Pollut Bull 105:566–574

    Article  CAS  Google Scholar 

  • Rohner CA, Armstrong AJ, Pierce SJ, Prebble CE, Cagua EF, Cochran JE, Berumen ML, Richardson AJ (2015) Whale sharks target dense prey patches of sergestid shrimp off Tanzania. J Plankton Res 37:352–362

    Article  Google Scholar 

  • Rothman SBS, Stern N, Goren M (2016) First record of the Indo-Pacific areolate grouper Epinephelus areolatus (Forsskål, 1775) (Perciformes: Epinephelidae) in the Mediterranean Sea. Zootaxa 4067:479–483

    Google Scholar 

  • Rowat D, Engelhardt U (2007) Seychelles: a case study of community involvement in the development of whale shark ecotourism and its socioeconomic impact. Fish Res 84:109–113

    Article  Google Scholar 

  • Rowat D, Meekan MG, Engelhardt U, Pardigon B, Vely M (2007) Aggregations of juvenile whale sharks (Rhincodon typus) in the Gulf of Tadjoura, Djibouti. Environ Biol Fish 80:465–472

    Article  Google Scholar 

  • Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Consver Biol 20:1026–1033

    Article  Google Scholar 

  • Saenz-Agudelo P, DiBattista JD, Piatek MJ, Gaither MR, Harrison HB, Nanninga GB, Berumen ML (2015) Seascape genetics along environmental gradients in the Arabian Peninsula: insights from ddRAD sequencing of anemonefishes. Mol Ecol 24:6241–6255

    Article  Google Scholar 

  • Sala E, Kizilkaya Z, Yildirim D, Ballesteros E (2011) Alien marine fishes deplete algal biomass in the Eastern Mediterranean. PLoS One 6:e17356

    Article  CAS  Google Scholar 

  • Salama AJ, Satheesh S, Balqadi AA, Kitto MR (2016) Identifying suitable fin fish cage farming sites in the eastern Red Sea Coast, Saudi Arabia. Thalassas Int J Mar Sci 32:1–9

    Article  Google Scholar 

  • Salas De la Fuente EM (2016) Reef fish population genomics and hybridization using RADSeq: a case study with Dascyllus trimaculatus. PhD thesis. University of Santa Cruz

    Google Scholar 

  • Sale PF, Feary DA, Burt JA, Bauman AG, Cavalcante GH, Drouillard KG, Kjerfve B, Marquis E, Trick CG, Usseglio P, Van Lavieren H (2011) The growing need for sustainable ecological management of marine communities of the Persian Gulf. Ambio 40:4–17

    Article  Google Scholar 

  • Sawall Y, Kürten B, Hoang BX, Sommer U, Wahl M, Al-Sofyani A, Al-Aidaroos AM, Marimuthu N, Khomayis HS, Gharbawi WY (2014) Coral communities, in contrast to fish communities, maintain a high assembly similarity along the large latitudinal gradient along the Saudi Red Sea coast. J Ecosyst Ecography S4:003

    Google Scholar 

  • Schwarcz HP, Gao Y, Campana S, Browne D, Knyf M, Brand U (1998) Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55:1798–1806

    Article  Google Scholar 

  • Sheppard C, Sheppard AS (1991) Corals and coral communities of Arabia. Fauna Arab 12:3–170

    Google Scholar 

  • Sheppard C, Price A, Roberts C (1992) Marine ecology of the Arabian region - patterns and processes in extreme tropical Environments. Academic, London

    Google Scholar 

  • Spaet J (2013) Predictable annual aggregation of longnose parrotfish (Hipposcarus harid) in the Red Sea. Mar Biodivers 43:179–180

    Article  Google Scholar 

  • Spaet JLY, Berumen ML (2015) Fish market surveys indicate unsustainable elasmobranch fisheries in the Saudi Arabian Red Sea. Fish Res 161:356–364

    Google Scholar 

  • Spaet JLY, Thorrold SR, Berumen ML (2012) A review of elasmobranch research in the Red Sea. J Fish Biol 80:952–965

    Google Scholar 

  • Spaet JLY, Jabado RW, Henderson AC, Moore ABM, Berumen ML (2015) Population genetics of four heavily exploited shark species around the Arabian Peninsula. Ecol Evol 5:2317–2332

    Article  Google Scholar 

  • Spaet JLY, Nanninga GB, Berumen ML (2016) Ongoing decline of shark populations in the Eastern Red Sea. Biol Conserv 201:20–28

    Article  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana AL, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Article  Google Scholar 

  • Spanier E, Galil BS (1991) Lessepsian migration: a continuous biogeographical process. Endeavour 15:102–106

    Article  Google Scholar 

  • Stephenson PC, Edmonds JS, Moran MJ, Caputi N (2001) Analysis of stable isotope ratios to investigate stock structure of red emperor and Rankin cod in northern Western Australia. J Fish Biol 58:126–144

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tenggardjaja K, Jackson A, Leon F, Azzurro E, Golani D, Bernardi G (2013) Genetics of a Lessepsian sprinter: the bluespotted cornetfish, Fistularia commersonii. Isr J Ecol Evol 59:181–185

    Article  Google Scholar 

  • Tesfamichael D (2012) Assessment of the Red Sea ecosystem with emphasis on fisheries. PhD thesis. University of British Columbia

    Google Scholar 

  • Tesfamichael D, Pauly D (2016) The Red Sea ecosystem and fisheries. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  • Tesfamichael D, Pitcher TJ (2006) Multidisciplinary evaluation of the sustainability of Red Sea fisheries using Rapfish. Fish Res 78:227–235

    Article  Google Scholar 

  • Thorrold SR, Latkoczy C, Swart PK, Jones CM (2001) Natal homing in a marine fish metapopulation. Science 291:297–299

    Article  CAS  Google Scholar 

  • Thorrold SR, Zacherl DC, Levin LA (2007) Population connectivity and larval dispersal using geochemical signatures in calcified structures. Oceanography 20:80–89

    Article  Google Scholar 

  • Tietbohl MD (2016) Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach. MSc thesis. King Abdullah University of Science and Technology, Saudi Arabia

    Google Scholar 

  • Tornabene L, Ahmadia GN, Berumen ML, Smith DJ, Jompa J, Pezold F (2013) Evolution of microhabitat association and morphology in a diverse group of cryptobenthic coral reef fishes (Teleostei: Gobiidae: Eviota). Mol Phylogenet Evol 66:391–400

    Article  Google Scholar 

  • Troyer E (2017) Microhabit association of cryptobenthic fishes (Family Gobiidae) in the central Red Sea. MSc thesis. King Abdullah University of Science and Technology, Saudi Arabia

    Google Scholar 

  • Troyer EM, Coker DJ, Berumen ML (2018) Comparison of cryptobenthic reef fish communities among microhabitats in the Red Sea. PeerJ 6:e5014

    Google Scholar 

  • Truett G, Heeger P, Mynatt R, Truett A, Walker J, Warman M (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques 29:52–54

    Article  CAS  Google Scholar 

  • Vignaud TM, Maynard JA, Leblois R, Meekan MG, Vázquez-Juárez R, Ramírez-Macías D, Pierce SJ, Rowat D, Berumen ML, Beeravolu C, Baksay S (2014) Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline. Mol Ecol 23:2590–2601

    Article  CAS  Google Scholar 

  • Waldrop E, Hobbs JPA, Randall JE, DiBattista JD, Rocha LA, Kosaki RK, Berumen ML, Bowen BW (2016) Phylogeography, population structure and evolution of coral-eating butterflyfishes (Family Chaetodontidae, genus Chaetodon, subgenus Corallochaetodon). J Biogeogr 43:1116–1129

    Article  Google Scholar 

  • Walter RP, Kessel ST, Alhasan N, Fisk AT, Heath DD, Chekchak T, Klaus R, Younis M, Hill G, Jones B, Braun CD (2014) First record of living Manta alfredi × Manta birostris hybrid. Mar Biodivers 44:2016–2001

    Article  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philos Trans Roy Soc B Biol Sci 360:1847–1857

    Article  CAS  Google Scholar 

  • White WT, Corrigan S, Yang L, Henderson AC, Bazinet AL, Swofford DL, Naylor GJP (2017) Phylogeny of the manta and devilrays (Chondrichthyes: mobulidae), with an updated taxonomic arrangement for the family. Zool J Linnean Soc 182:50–75

    Article  Google Scholar 

  • Wilkinson C (2008) Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville

    Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234

    Article  Google Scholar 

  • Wood LJ (2007) MPA global: a database of the world’s marine protected areas. Sea Around Us Project, UNEP-WCMC & WWF. http://www.mpaglobal.org

  • Wyatt ASJ, Waite AM, Humphries S (2012) Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31:1029–1044

    Article  Google Scholar 

  • Xu W, Ruch J, Jónsson S (2015) Birth of two volcanic islands in the southern Red Sea. Nat Commun 6:7104

    Article  CAS  Google Scholar 

  • Yao F, Hoteit I, Pratt LJ, Bower AS, Zhai P, Köhl A, Gopalakrishnan G (2014) Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J Geophys Res 119:2238–2262

    Google Scholar 

  • Zhan P, Subramanian AC, Yao F, Hoteit I (2014) Eddies in the Red Sea: a statistical and dynamical study. J Geophys Res – Oceans 119:3909–3925

    Article  Google Scholar 

Download references

Acknowledgements

Data acknowledgement: This research has made use of data and software tools provided by Wildbook for Whale Sharks, an online mark-recapture database operated by the non-profit scientific organization Wild Me with support from public donations and the Qatar Whale Shark Research Project.

We thank Malek Amr Gusti, Manal Bamashmos, and Prof. Khaled Salama for their assistance with Arabic translations.

We thank the staff of the KAUST Biosciences Core Laboratory for their assistance in the genetic analyses described in Sect. 8.3.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Berumen .

Editor information

Editors and Affiliations

8.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Chapter 8 (XLSX 24KB).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berumen, M.L. et al. (2019). Fishes and Connectivity of Red Sea Coral Reefs. In: Voolstra, C., Berumen, M. (eds) Coral Reefs of the Red Sea. Coral Reefs of the World, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-05802-9_8

Download citation

Publish with us

Policies and ethics