Skip to main content

Metabolomic Biomarkers in Mental Disorders: Bipolar Disorder and Schizophrenia

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders

Abstract

Psychiatric disorders are some of the most impairing human diseases. Among them, bipolar disorder and schizophrenia are the most common. Both have complicated diagnostics due to their phenotypic, biological, and genetic heterogeneity, unknown etiology, and the underlying biological pathways, and molecular mechanisms are still not completely understood. Given the multifactorial complexity of these disorders, identification and implementation of metabolic biomarkers would assist in their early detection and diagnosis and facilitate disease monitoring and treatment responses. To date, numerous studies have utilized metabolomics to better understand psychiatric disorders, and findings from these studies have begun to converge. In this chapter, we briefly describe some of the metabolomic biomarkers found in these two disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venigalla H, Mekala HM, Hassan M, Zain H (2017) An update on biomarkers in psychiatric disorders—are we aware, do we use in our clinical practice? Ment Health Fam Med 13:471–479

    Google Scholar 

  2. Boksa P (2013) A way forward for research on biomarkers for psychiatric disorders. J Psychiatry Neurosci 38(2):75–77

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gjerris A, Sørensen AS, Rafaelsen OJ, Werdelin L, Alling C, Linnoila M (1987) 5-HT and 5-HIAA in cerebrospinal fluid in depression. J Affect Disord 12(1):13–22

    Article  CAS  PubMed  Google Scholar 

  4. Ross RG, Olincy A, Harris JG, Sullivan B, Radant A (2000) Smooth pursuit eye movements in schizophrenia and attentional dysfunction: adults with schizophrenia, ADHD, and a normal comparison group. Biol Psychiatry 48(3):197–203

    Article  CAS  PubMed  Google Scholar 

  5. Yeung PK (2018) Metabolomics and biomarkers for drug discovery. Metabolites 8(1)

    Article  PubMed Central  CAS  Google Scholar 

  6. Lista S, Giegling I, Rujescu D (2014) Schizophrenia: blood-serum-plasma metabolomics. In: Martins-de-Souza D (ed) Proteomics and metabolomics in psychiatry. Karger Publishers, Basel, p 27–44. ISBN-10: 3318025992

    Google Scholar 

  7. Holmes E, Tsang TM, Huang JT-J, Leweke FM, Koethe D, Gerth CW et al (2006) Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3(8):e327. https://doi.org/10.1371/journal.pmed.0030327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J et al (2012) Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry 2:e149. https://doi.org/10.1038/tp.2012.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng P, Wei Y-D, Yao G-E, Ren G-P, Guo J, Zhou C-J et al (2013) Novel urinary biomarkers for diagnosing bipolar disorder. Metabolomics 9(4):800–808

    Article  CAS  Google Scholar 

  10. Chen J-J, Zhou C-J, Liu Z, Fu Y-Y, Zheng P, Yang D-Y et al (2015) Divergent urinary metabolic phenotypes between major depressive disorder and bipolar disorder identified by a combined GC-MS and NMR spectroscopic metabonomic approach. J Proteome Res 14(8):3382–3389

    Article  CAS  PubMed  Google Scholar 

  11. Sethi S, Brietzke E (2015) Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol 19(3):yv096. https://doi.org/10.1093/ijnp/pyv096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lindon JC, Holmes E, Nicholson JK (2003) Peer reviewed: so what’s the deal with metabonomics? Anal Chem 75(17):384A–391A

    Article  CAS  PubMed  Google Scholar 

  13. Friedhoff AJ, van Winkle E (1962) The characteristics of an amine found in urine of schizophrenic patients. J Nerv Ment Dis 135:550–555

    Article  CAS  PubMed  Google Scholar 

  14. Boulton AA, Pollitt RJ, Majer JR (1967) Identity of a urinary “pink spot” in schizophrenia and Parkinson’s disease. Nature 215:132–134

    Article  CAS  PubMed  Google Scholar 

  15. Money TT, Bousman CA (2013) Metabolomics of psychotic disorders. Metabolomics 3:117. https://doi.org/10.4172/2153-0769.1000117

    Article  CAS  Google Scholar 

  16. Kohler I, Hankemeier T, van der Graaf PH, Knibbe CAJ, van Hasselt JGC (2017) Integrating clinical metabolomics-based biomarker discovery and clinical pharmacology to enable precision medicine. Eur J Pharm Sci 109S:S15–S21

    Article  PubMed  CAS  Google Scholar 

  17. Fuhrer T, Zamboni N (2015) High-throughput discovery metabolomics. Curr Opin Biotechnol 31:73–78

    Article  CAS  PubMed  Google Scholar 

  18. Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137(2):293–300

    Article  CAS  PubMed  Google Scholar 

  19. Alonso A, Marsal S, Julià A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 3:23. https://doi.org/10.3389/fbioe.2015.00023

  20. Riekeberg E, Powers R (2017) New frontiers in metabolomics: from measurement to insight. F1000Res 6:1148. https://doi.org/10.12688/f1000research.11495.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometrics Intellig Lab Syst 2(1):37–52

    Article  CAS  Google Scholar 

  22. Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6(9):2812–2831

    Article  CAS  Google Scholar 

  23. Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 20(8-10):341–351

    Article  CAS  Google Scholar 

  24. Berrueta LA, Alonso-Salces RM, Héberger K (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158(1-2):196–214

    Article  CAS  PubMed  Google Scholar 

  25. Peng C-YJ, Lee KL, Ingersoll GM (2002) An introduction to logistic regression analysis and reporting. J Educ Res 96(1):3–14

    Article  Google Scholar 

  26. Merikangas KR, Jin R, He J-P, Kessler RC, Lee S, Sampson NA et al (2011) Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 68(3):241–251

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kessler RC, Merikangas KR, Wang PS (2007) Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century. Annu Rev Clin Psychol 3:137–158

    Article  PubMed  Google Scholar 

  28. Sagar R, Pattanayak RD (2017) Potential biomarkers for bipolar disorder: where do we stand? Indian J Med Res 145(1):7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR et al (2018) Bipolar disorders. Nat Rev Dis Primers 4:18008. https://doi.org/10.1038/nrdp.2018.8

    Article  PubMed  Google Scholar 

  30. Hilty DM, Leamon MH, Lim RF, Kelly RH, Hales RE (2006) A review of bipolar disorder in adults. Psychiatry 3(9):43–55

    PubMed  PubMed Central  Google Scholar 

  31. Shorter E (2009) The history of lithium therapy. Bipolar Disord 11(Suppl2):4–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coppen A, Healy D (1996) Biological psychiatry in Britain. In: Healy D (ed) The psychopharmacologists: interviews by David Healey. Chapman and Hall, London, pp 265–286

    Google Scholar 

  33. Marwaha S, Sal N, Bebbington P (2014) Adult psychiatric morbidity survey—bipolar disorder. In: NHS digital. https://digital.nhs.uk/data-and-information/publications/statistical/adult-psychiatric-morbidity-survey/adult-psychiatric-morbidity-survey-survey-of-mental-health-and-wellbeing-england-2014. Accessed 27 Sep 2018

  34. Murray CJL, Lopez AD (1996) The global burden of disease. Harvard University Press, Cambridge, MA. ISBN:0-9655466-0-8

    Google Scholar 

  35. Cade JFJ (1949) Lithium salts in the treatment of psychotic excitement. Med J Aust 2(10):349–352

    CAS  PubMed  Google Scholar 

  36. Malhi GS, Tanious M, Das P, Coulston CM, Berk M (2013) Potential mechanisms of action of lithium in bipolar disorder. CNS Drugs 27(2):135–153

    Article  PubMed  Google Scholar 

  37. Sethi S, Pedrini M, Rizzo LB, Zeni-Graiff M, Mas CD, Cassinelli AC et al (2017) 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling. Int J Bipolar Disord 5(1):23. https://doi.org/10.1186/s40345-017-0088-2

  38. Chen J-J, Liu Z, Fan S-H, Yang D-Y, Zheng P, Shao W-H et al (2014) Combined application of NMR- and GC-MS-based metabonomics yields a superior urinary biomarker panel for bipolar disorder. Sci Rep 4:5855. https://doi.org/10.1038/srep05855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sussulini A, Prando A, Maretto DA, Poppi RJ, Tasic L, Banzato CEM et al (2009) Metabolic profiling of human blood serum from treated patients with bipolar disorder employing 1H NMR spectroscopy and chemometrics. Anal Chem 81(23):9755–9763

    Article  CAS  PubMed  Google Scholar 

  40. Liu M-L, Zheng P, Liu Z, Xu Y, Mu J, Guo J et al (2014) GC-MS based metabolomics identification of possible novel biomarkers for schizophrenia in peripheral blood mononuclear cells. Mol BioSyst 10(9):2398–2406

    Article  CAS  PubMed  Google Scholar 

  41. Xu X-J, Zheng P, Ren G-P, Liu M-L, Mu J, Guo J et al (2014) 2,4-Dihydroxypyrimidine is a potential urinary metabolite biomarker for diagnosing bipolar disorder. Mol Biosyst 10(4):813–819

    Article  CAS  PubMed  Google Scholar 

  42. Soeiro-de-Souza MG, Henning A, Machado-Vieira R, Moreno RA, Pastorello BF, da Costa LC et al (2015) Anterior cingulate Glutamate-Glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol 25(12):2221–2229

    Article  CAS  PubMed  Google Scholar 

  43. Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C et al (2018) Anterior cingulate cortex glutamatergic metabolites and mood stabilizers in euthymic bipolar I disorder patients: a proton magnetic resonance spectroscopy study. Biol Psychiatry Cogn Neurosci Neuroimaging 3(12):985-991

    Google Scholar 

  44. Atagün Mİ, Şıkoğlu EM, Can SS, Uğurlu GK, Kaymak SU, Çayköylü A et al (2018) Neurochemical differences between bipolar disorder type I and II in superior temporal cortices: a proton magnetic resonance spectroscopy study. J Affect Disord 235:15–19

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Chen J-J, Huang H, Zhao L-B, Zhou D-Z, Yang Y-T, Zheng P et al (2014) Sex-specific urinary biomarkers for diagnosing bipolar disorder. PLoS One 9(12):e115221. https://doi.org/10.1371/journal.pone.0115221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Haarman BCM, Riemersma-Van der Lek RF (2016) Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder. Bipolar Disord 56:21–33

    Google Scholar 

  47. Tannous J, Cao B, Stanley J, Amaral-Silva H, Soares J (2018) Metabolite abnormalities in the anterior white matter of patients with pediatric bipolar disorder. Biol Psychiatry 83(9, Supplement):S263. https://doi.org/10.1016/j.biopsych.2018.02.678

    Article  Google Scholar 

  48. Yoshimi N, Futamura T, Kakumoto K, Salehi AM, Sellgren CM, Holmén-Larsson J et al (2016) Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder. BBA Clin 5:151–158

    Article  PubMed  PubMed Central  Google Scholar 

  49. Atagün Mİ, Şıkoğlu EM, Soykan Ç, Serdar Süleyman C, Ulusoy-Kaymak S, Çayköylü A et al (2017) Perisylvian GABA levels in schizophrenia and bipolar disorder. Neurosci Lett 637:70–74

    Article  PubMed  CAS  Google Scholar 

  50. Kageyama Y, Kasahara T, Morishita H, Mataga N, Deguchi Y, Tani M et al (2017) Search for plasma biomarkers in drug-free patients with bipolar disorder and schizophrenia using metabolome analysis. Psychiatry Clin Neurosci 71(2):115–123

    Article  CAS  PubMed  Google Scholar 

  51. Poletti S, Myint AM, Schüetze G, Bollettini I, Mazza E, Grillitsch D et al (2018) Kynurenine pathway and white matter microstructure in bipolar disorder. Eur Arch Psychiatry Clin Neurosci 268(2):157–168

    Article  PubMed  Google Scholar 

  52. Yoshimi N, Futamura T, Bergen SE, Iwayama Y, Ishima T, Sellgren C et al (2016) Cerebrospinal fluid metabolomics identifies a key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis. Mol Psychiatry 21(11):1504–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davanzo P, Thomas MA, Yue K, Oshiro T, Belin T, Strober M et al (2001) Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 24(4):359–369

    Article  CAS  PubMed  Google Scholar 

  54. Ribeiro HC, Klassen A, Pedrini M, Carvalho MS, Rizzo LB, Noto MN et al (2017) A preliminary study of bipolar disorder type I by mass spectrometry-based serum lipidomics. Psychiatry Res 258:268–273

    Article  PubMed  Google Scholar 

  55. Liu M-L, Zhang X-T, Du X-Y, Fang Z, Liu Z, Xu Y et al (2015) Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: a targeted metabolomic study. J Transl Med 13:226. https://doi.org/10.1186/s12967-015-0540-y

  56. Atack JR, Rapoport SI, Varley CL (1993) Characterization of inositol monophosphatase in human cerebrospinal fluid. Brain Res 613(2):305–308

    Article  CAS  PubMed  Google Scholar 

  57. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361(6410):315–325

    Article  CAS  PubMed  Google Scholar 

  58. Manji HK, Potter WZ, Lenox RH (1995) Signal transduction pathways. Molecular targets for lithium’s actions. Arch Gen Psychiatry 52(7):531–543

    Article  CAS  PubMed  Google Scholar 

  59. Yüksel C, Öngür D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68(9):785–794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653

    Article  CAS  PubMed  Google Scholar 

  61. Erecińska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35(4):245–296

    Article  PubMed  Google Scholar 

  62. Frey BN, Stanley JA, Nery FG, Monkul ES, Nicoletti MA, Chen H-H et al (2007) Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord 9(Suppl 1):119–127

    Article  PubMed  Google Scholar 

  63. Oertel-Knöchel V, Reinke B, Alves G, Jurcoane A, Wenzler S, Prvulovic D et al (2014) Frontal white matter alterations are associated with executive cognitive function in euthymic bipolar patients. J Affect Disord 155:223–233

    Article  PubMed  Google Scholar 

  64. Lu LH, Zhou XJ, Keedy SK, Reilly JL, Sweeney JA (2011) White matter microstructure in untreated first episode bipolar disorder with psychosis: comparison with schizophrenia. Bipolar Disord 13(7-8):604–613

    Article  PubMed  PubMed Central  Google Scholar 

  65. Benedetti F, Yeh P-H, Bellani M, Radaelli D, Nicoletti MA, Poletti S et al (2011) Disruption of white matter integrity in bipolar depression as a possible structural marker of illness. Biol Psychiatry 69(4):309–317

    Article  PubMed  Google Scholar 

  66. Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: overview and treatment options. PT 39(9):638–645

    Google Scholar 

  67. Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388(10039):86–97

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD et al (2015) Schizophrenia. Nat Rev Dis Primers 1:15067. https://doi.org/10.1038/nrdp.2015.67

  69. Lavretsky H (2008) History of schizophrenia as a psychiatric disorder. In: Mueser KT, Jeste DV (eds) Clinical handbook of schizophrenia. Guilford Publications, New York, pp 3–13. ISBN:9781609182373

    Google Scholar 

  70. Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  CAS  PubMed  Google Scholar 

  71. Orešič M, Tang J, Seppänen-Laakso T, Mattila I, Saarni SE, Saarni SI et al (2011) Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 3(3):19. https://doi.org/10.1186/gm233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K et al (2013) Potential metabolite markers of schizophrenia. Mol Psychiatry 18(1):67–78

    Article  CAS  PubMed  Google Scholar 

  73. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al (2003) Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60(6):572–576

    Article  CAS  PubMed  Google Scholar 

  74. Palomino A, González-Pinto A, Aldama A, González-Gómez C, Mosquera F, González-García G et al (2007) Decreased levels of plasma glutamate in patients with first-episode schizophrenia and bipolar disorder. Schizophr Res 95(1-3):174–178

    Article  PubMed  Google Scholar 

  75. Prell GD, Green JP, Kaufmann CA, Khandelwal JK, Morrishow AM, Kirch DG et al (1995) Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationships to levels of other aminergic transmitters and ratings of symptoms. Schizophr Res 14(2):93–104

    Article  CAS  PubMed  Google Scholar 

  76. Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y et al (2011) Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res 10(12):5433–5443

    Article  PubMed  CAS  Google Scholar 

  77. Cai H-L, Zhu R-H, Li H-D (2010) Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem 396(1):103–111

    Article  CAS  PubMed  Google Scholar 

  78. Fukushima T, Iizuka H, Yokota A, Suzuki T, Ohno C, Kono Y et al (2014) Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One 9(7):e101652. https://doi.org/10.1371/journal.pone.0101652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Phillips M, Sabas M, Greenberg J (1993) Increased pentane and carbon disulfide in the breath of patients with schizophrenia. J Clin Pathol 46(9):861–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. AI Awam K, Haußleiter IS, Dudley E, Donev R, Brüne M, Juckel G et al (2015) Multiplatform metabolome and proteome profiling identifies serum metabolite and protein signatures as prospective biomarkers for schizophrenia. J Neural Transm 122(Suppl 1):S111–S122

    Article  CAS  Google Scholar 

  81. Creveling CR, Daly JW (1967) Identification of 3,4-dimethoxyphenethylamine from schizophrenic urine by mass spectrometry. Nature 216(5111):190–191

    Article  CAS  PubMed  Google Scholar 

  82. Ross BM, Shah S, Peet M (2011) Increased breath ethane and pentane concentrations in currently unmedicated patients with schizophrenia. OJPsych 1(01):1–7

    Article  Google Scholar 

  83. Koike S, Bundo M, Iwamoto K, Suga M, Kuwabara H, Ohashi Y et al (2014) A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study. Transl Psychiatry 4:e379. https://doi.org/10.1038/tp.2014.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baruah S, Waziri R, Hegwood TS, Mallis LM (1991) Plasma serine in schizophrenics and controls measured by gas chromatography-mass spectrometry. Psychiatry Res 37(3):261–270

    Article  CAS  PubMed  Google Scholar 

  85. Petrovchich I, Sosinsky A, Konde A, Archibald A, Henderson D, Maletic-Savatic M et al (2016) Metabolomics in schizophrenia and major depressive disorder. Front Biol 11(3):222–231

    Article  CAS  Google Scholar 

  86. Ito C (2004) The role of the central histaminergic system on schizophrenia. Drug News Perspect 17(6):383–387

    Article  CAS  PubMed  Google Scholar 

  87. Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM et al (2007) Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry 12(10):934–945

    Article  CAS  PubMed  Google Scholar 

  88. Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF et al (2010) High dose D-serine in the treatment of schizophrenia. Schizophr Res 121(1-3):125–130

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM (2012) D-serine and schizophrenia: an update. Expert Rev Neurother 12(7):801–812

    Article  CAS  PubMed  Google Scholar 

  90. Nunes de Paiva MJ, Menezes HC, de Lourdes CZ (2014) Sampling and analysis of metabolomes in biological fluids. Analyst 139(15):3683–3694

    Article  CAS  PubMed  Google Scholar 

  91. Li N, Song YP, Tang H, Wang Y (2016) Recent developments in sample preparation and data pre-treatment in metabonomics research. Arch Biochem Biophys 589:4–9

    Article  CAS  PubMed  Google Scholar 

  92. Pontes JGM, Brasil AJM, Cruz GCF, de Souza RN, Tasic L (2017) NMR-based metabolomics strategies: plants, animals and humans. Anal Methods 9:1078–1096

    Article  Google Scholar 

  93. Smolinska A, Blanchet L, Buydens LMC, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97

    Article  CAS  PubMed  Google Scholar 

  94. Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703

    Article  CAS  PubMed  Google Scholar 

  95. Pontes JGM, Brasil AJM, Cruz GCF, de Souza RN, Tasic L (2017) 1H NMR metabolomic profiling of human and animal blood serum samples. Methods Mol Biol 1546:275–282

    Article  CAS  PubMed  Google Scholar 

  96. Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6(2):443–458

    Article  CAS  PubMed  Google Scholar 

  97. Barbosa BS, Martins LG, Costa TBBC, Cruz G, Tasic L (2018) Qualitative and quantitative NMR approaches in blood serum lipidomics. Methods Mol Biol 1735:365–379

    Article  CAS  PubMed  Google Scholar 

  98. Stoop MP, Coulier L, Rosenling T, Shi S, Smolinska AM, Buydens L et al (2010) Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol Cell Proteomics 9(9):2063–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sakurai T, Yamada Y, Sawada Y, Matsuda F, Akiyama K, Shinozaki K et al (2013) PRIMe update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation. Plant Cell Physiol 54(2):e5–e5. https://doi.org/10.1093/pcp/pcs184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494

    Article  PubMed  PubMed Central  Google Scholar 

  101. Worley B, Powers R (2014) MVAPACK: a complete data handling package for NMR metabolomics. ACS Chem Biol 9(5):1138–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    Article  CAS  PubMed  Google Scholar 

  103. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2007) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–D408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF et al (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26:162–164

    Article  CAS  PubMed  Google Scholar 

  105. Ellinger JJ, Chylla RA, Ulrich EL, Markley JL (2012) Databases and software for NMR-based metabolomics. Curr Metabolomics 1:28–40

    Google Scholar 

  106. Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81(8):3079–3086

    Article  CAS  PubMed  Google Scholar 

  107. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395. https://doi.org/10.1186/1471-2105-11-395

  108. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Anal Chem 78(3):779–787

    Article  CAS  PubMed  Google Scholar 

  109. Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN (2007) Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem 79(3):966–973

    Article  CAS  PubMed  Google Scholar 

  110. Chen W, Ma C, Miao A, Pang S, Qi D, Wang W (2017) Chemometric methods for the analysis of graftage-related black tea aroma variation by solid phase mirco-extraction and gas chromatography-mass spectrometry. Agilent Technologies. https://www.agilent.com/cs/library/applications/5991-8330EN.pdf

  111. Piotto M, Saudek V, Sklenář V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2(6):661–665

    Article  CAS  PubMed  Google Scholar 

  112. Liu M, Mao X, Ye C, Huang H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132(1):125–129

    Article  CAS  Google Scholar 

  113. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  114. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  115. Sethi S, Hayashi MAF, Barbosa BS, Pontes JGM, Tasic L, Brietzke E (2017) Lipidomics, biomarkers, and schizophrenia: a current perspective. Adv Exp Med Biol 965:265–290

    Article  CAS  PubMed  Google Scholar 

  116. Nagana Gowda GA, Raftery D (2017) Recent advances in NMR-based metabolomics. Anal Chem 89(1):490–510

    Article  CAS  PubMed  Google Scholar 

  117. Marshall DD, Lei S, Worley B, Huang Y, Garcia-Garcia A, Franco R et al (2015) Combining DI-ESI–MS and NMR datasets for metabolic profiling. Metabolomics 11(2):391–402

    Article  CAS  PubMed  Google Scholar 

  118. López-López Á, López-Gonzálvez Á, Barker-Tejeda TC, Barbas C (2018) A review of validated biomarkers obtained through metabolomics. Expert Rev Mol Diagn 18(6):557–575

    Article  PubMed  CAS  Google Scholar 

  119. Matsumoto J, Sugiura Y, Yuki D, Hayasaka T, Goto-Inoue N, Zaima N et al (2011) Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 400(7):1933–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Amstalden Van Hove ER, Smith DF, Heeren RMA (2010) A concise review of mass spectrometry imaging. J Chromatogr A 1217:3946–3954

    Article  CAS  PubMed  Google Scholar 

  121. Bodzon-Kulakowska A, Sude P (2016) Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. Mass Espectrom Rev 35(1):147–169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubica Tasic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quintero, M., Stanisic, D., Cruz, G., Pontes, J.G.M., Costa, T.B.B.C., Tasic, L. (2019). Metabolomic Biomarkers in Mental Disorders: Bipolar Disorder and Schizophrenia. In: Guest, P. (eds) Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders. Advances in Experimental Medicine and Biology(), vol 1118. Springer, Cham. https://doi.org/10.1007/978-3-030-05542-4_14

Download citation

Publish with us

Policies and ethics