Skip to main content

Cell Culture Model to Study Cerebral Aneurysm Biology

  • Chapter
  • First Online:
Subarachnoid Hemorrhage

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 127))

Abstract

Mechanisms governing cerebral aneurysm (CA) formation, progression, and rupture remain incompletely understood. However, understanding such mechanisms is critical to improving treatment for patients harboring CA. In vitro studies facilitate dissecting molecular mechanisms underlying vascular pathology and allow screening of therapies that can be subsequently explored in vivo. Cerebral vascular smooth muscle cells (VSMC) are an important constituent of the vessel wall, and phenotypic modulation of these cells to a pro-inflammatory, pro-matrix remodeling phenotype appears to be important in CA pathology. We have taken a reductionist approach using cultured cerebral VSMC to further explore CA biology. We describe techniques for culturing cerebral VSMC and outline experimental approaches incorporating these cells to study CA biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albarrán-Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445–53. https://doi.org/10.1016/j.atherosclerosis.2016.06.012.

    Article  CAS  PubMed  Google Scholar 

  2. Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Owens GK, Koch WJ, Greig NH, Dumont AS. TNF-alpha induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J Cereb Blood Flow Metab. 2013;33:1564–73. https://doi.org/10.1038/jcbfm.2013.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118:692–702. https://doi.org/10.1161/circresaha.115.306361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 2012;32:1659–76. https://doi.org/10.1038/jcbfm.2012.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coen M, Burkhardt K, Bijlenga P, Gabbiani G, Schaller K, Kövari E, Rüfenacht DA, Ruíz DSM, Pizzolato G, Bochaton-Piallat M-L. Smooth muscle cells of human intracranial aneurysms assume phenotypic features similar to those of the atherosclerotic plaque. Cardiovasc Pathol. 2013;22:339–44. https://doi.org/10.1016/j.carpath.2013.01.083.

    Article  CAS  PubMed  Google Scholar 

  6. Eskesen V, Rosenorn J, Schmidt K, Espersen JO, Haase J, Harmsen A, Hein O, Knudsen V, Marcussen E, Midholm S, et al. Clinical features and outcome in 48 patients with unruptured intracranial saccular aneurysms: a prospective consecutive study. Br J Neurosurg. 1987;1:47–52.

    Article  CAS  Google Scholar 

  7. Etminan N, Rinkel GJ. Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol. 2016;12:699–713. https://doi.org/10.1038/nrneurol.2016.150.

    Article  PubMed  Google Scholar 

  8. Hokari M, Isobe M, Imai T, Chiba Y, Iwamoto N, Isu T. The impact of atherosclerotic factors on cerebral aneurysm is location dependent: aneurysms in stroke patients and healthy controls. J Stroke Cerebrovasc Dis. 2014;23:2301–7. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.04.019.

    Article  PubMed  Google Scholar 

  9. Iniaghe LO, Krafft PR, Klebe DW, Omogbai EKI, Zhang JH, Tang J. Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage. Neurobiol Dis. 2015;82:349–58. https://doi.org/10.1016/j.nbd.2015.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.

    Article  CAS  Google Scholar 

  11. Kosierkiewicz TA, Factor SM, Dickson DW. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol. 1994;53:399–406.

    Article  CAS  Google Scholar 

  12. Kramer T, Grob T, Menzel L, Hirnet T, Griemert E, Radyushkin K, Thal SC, Methner A, Schaefer MKE. Dimethyl fumarate treatment after traumatic brain injury prevents depletion of antioxidative brain glutathione and confers neuroprotection. J Neurochem. 2017;143(5):523–33. https://doi.org/10.1111/jnc.14220.

    Article  CAS  PubMed  Google Scholar 

  13. Lin SX, Lisi L, Dello Russo C, Polak PE, Sharp A, Weinberg G, Kalinin S, Feinstein DL. The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro. 2011;3. https://doi.org/10.1042/AN20100033.

    Article  Google Scholar 

  14. Liu Y, Qiu J, Wang Z, You W, Wu L, Ji C, Chen G. Dimethyl fumarate alleviates early brain injury and secondary cognitive deficits after experimental subarachnoid hemorrhage via activation of Keap1-Nrf2-ARE system. J Neurosurg. 2015;123:915–23. https://doi.org/10.3171/2014.11.JNS132348.

    Article  CAS  PubMed  Google Scholar 

  15. Long X, Bell RD, Gerthoffer WT, Zlokovic BV, Miano JM. Myocardin is sufficient for a smooth muscle-like contractile phenotype. Arterioscler Thromb Vasc Biol. 2008;28:1505–10. https://doi.org/10.1161/atvbaha.108.166066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mack CP, Thompson MM, Lawrenz-Smith S, Owens GK. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ Res. 2000;86:221–32.

    Article  CAS  Google Scholar 

  17. Manabe I, Owens GK. CArG elements control smooth muscle subtype-specific expression of smooth muscle myosin in vivo. J Clin Invest. 2001;107:823–34. https://doi.org/10.1172/jci11385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rincon F, Rossenwasser RH, Dumont A. The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery. 2013;73:217–22. ; discussion 212–3. https://doi.org/10.1227/01.neu.0000430290.93304.33.

    Article  PubMed  Google Scholar 

  19. Saveland H, Sonesson B, Ljunggren B, Brandt L, Uski T, Zygmunt S, Hindfelt B. Outcome evaluation following subarachnoid hemorrhage. J Neurosurg. 1986;64:191–6. https://doi.org/10.3171/jns.1986.64.2.0191.

    Article  CAS  PubMed  Google Scholar 

  20. Sawyer DM, Amenta PS, Medel R, Dumont AS. Inflammatory mediators in vascular disease: identifying promising targets for intracranial aneurysm research. Mediat Inflamm. 2015;2015:896283. https://doi.org/10.1155/2015/896283.

    Article  CAS  Google Scholar 

  21. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK. Corrigendum: KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2016;22:217. https://doi.org/10.1038/nm0216-217a.

    Article  CAS  PubMed  Google Scholar 

  22. Starke RM, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez F, Hasan DM, Rosenwasser RH, Owens GK, Koch WJ, Dumont AS. Cigarette smoke modulates vascular smooth muscle phenotype: implications for carotid and cerebrovascular disease. PLoS One. 2013;8:e71954. https://doi.org/10.1371/journal.pone.0071954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013;10:247–55.

    Article  CAS  Google Scholar 

  24. Starke RM, Chalouhi N, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Wada K, Shimada K, Hasan DM, Greig NH, Owens GK, Dumont AS. Critical role of TNF-alpha in cerebral aneurysm formation and progression to rupture. J Neuroinflammation. 2014;11:77. https://doi.org/10.1186/1742-2094-11-77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Starke RM, Thompson JW, Ali MS, Pascale CL, Martinez Lege A, Ding D, Chalouhi N, Hasan DM, Jabbour P, Owens GK, Toborek M, Hare JM, Dumont AS. Cigarette smoke initiates oxidative stress-induced cellular phenotypic modulation leading to cerebral aneurysm pathogenesis. Arterioscler Thromb Vasc Biol. 2018;38(3):610–21. https://doi.org/10.1161/atvbaha.117.310478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration. Stroke. 1997;28:491–9.

    Article  CAS  Google Scholar 

  27. Sun Q, Taurin S, Sethakorn N, Long X, Imamura M, Wang DZ, Zimmer WE, Dulin NO, Miano JM. Myocardin-dependent activation of the CArG box-rich smooth muscle gamma-actin gene: preferential utilization of a single CArG element through functional association with the NKX3.1 homeodomain protein. J Biol Chem. 2009;284:32582–90. https://doi.org/10.1074/jbc.M109.033910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yao Y, Miao W, Liu Z, Han W, Shi K, Shen Y, Li H, Liu Q, Fu Y, Huang D, Shi FD. Dimethyl fumarate and monomethyl fumarate promote post-ischemic recovery in mice. Transl Stroke Res. 2016;7:535–47. https://doi.org/10.1007/s12975-016-0496-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoshida T, Sinha S, Dandre F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, Owens GK. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ Res. 2003;92:856–64. https://doi.org/10.1161/01.res.0000068405.49081.09.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron S. Dumont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinez, A.N., Pascale, C.L., Amenta, P.S., Israilevich, R., Dumont, A.S. (2020). Cell Culture Model to Study Cerebral Aneurysm Biology. In: Martin, R., Boling, W., Chen, G., Zhang, J. (eds) Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-04615-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04615-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04614-9

  • Online ISBN: 978-3-030-04615-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics