Skip to main content

Principles of Interpretation of Stress Echocardiography

  • Chapter
  • First Online:
Echocardiography in Acute Coronary Syndrome

Stress echocardiography was introduced in the early 1980s and has matured into a robust, versatile, widely available, reliable, and cost-effective technique utilized for noninvasive imaging of the heart. In combination with a variety of stressors, stress echocardiography provides a means for the detection of ischemia by assessment of regional wall motion abnormalities. In addition to its utility in detection and accurate risk stratification of patients with suspected and established coronary artery disease, it has a role in assessment of severity of valvular heart disease by providing valuable physiological hemodynamic data and also has a proven role in the assessment of myocardial viability in patients with dyssynergic segments as well as with left ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stratmann HG, Kennedy HL. Evaluation of coronary artery disease in the patient unable to exercise: alternatives to exercise stress testing. Am Heart J. 1989;June:117(6):1344–65.

    Article  PubMed  CAS  Google Scholar 

  2. Peteiro J, Garrido I, Monserrat L, et al. Comparison of peak and postexercise treadmill echocardiography with the use of continuous harmonic imaging acquisition. J Am Soc Echocardiogr. 2004;17:1044–1049.

    Article  PubMed  Google Scholar 

  3. Modesto K, Rainbird A, Klarich K, et al. Comparison of supine bicycle exercise and treadmill exercise Doppler echocardiography in evaluation of patients with coronary artery disease. Am J Cardiol. 2003; 91:1245–1248.

    Article  PubMed  Google Scholar 

  4. Barasch E, Wilansky S. Dobutamine stress echocardiography in clinical practice with a review of the recent literature. Tex Heart Inst J. 1994;21(3):202–210.

    PubMed  CAS  Google Scholar 

  5. Chaudhry FA, Tauke JT, Alessandrini RS, Greenfield SA, Tommasso CL, Bonow RO. Enhanced detection of ischemic myocardium by transesophageal dobutamine stress echocardiography: comparison with simultaneous transthoracic echocardiography. Echocardiography. 2000 April;17(3):241–253.

    Article  PubMed  CAS  Google Scholar 

  6. Hoffmann R, Marwick TH, Poldermans D, et al. Refinements in stress echocardiographic techniques improve inter-institutional agreement in interpretation of dobutamine stress echocardiograms. Eur Heart J. 2002;23:821–829.

    Article  PubMed  CAS  Google Scholar 

  7. Mälder CF, Payne N, Wilkenshoff U, et al. Non-invasive diagnosis of coronary artery disease by quantitative stress echocardiography. Eur Heart J. 2003;24:1584–1594.

    Article  Google Scholar 

  8. Rainbird AJ, Mulvagh SL, McCully OJK, et al. Contrast dobutamine stress echocardiography: clinical practice assessment in 300 consecutive patients. J Am Soc Echocardiogr. 2001;14:378–385.

    Article  PubMed  CAS  Google Scholar 

  9. Picano E, Lattanzi F, Orlandini A, et al. Stress echocardiography and the human factor: the importance of being expert. J Am Coll Cardiol. 1991;17:666–669.

    Article  PubMed  CAS  Google Scholar 

  10. Quinones MA, Douglas PS, Foster E et al. ACC/AHA clinical competence statement on echocardiography a report of the American College of Cardiology/American Heart Association/American College of Physicians/American Society of Internal Medicine Task Force on Clinical Competence, J Am Coll Cardiol. 2003;41:687–708.

    Article  PubMed  Google Scholar 

  11. Pellikka PA, Nagueh SF, Elhendy AA, et al. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007 September;20(9):1021–1041

    Article  PubMed  Google Scholar 

  12. Hoffmann R, Lethen H, Marwick T, et al. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol. 1996;27:330–336.

    Article  PubMed  CAS  Google Scholar 

  13. Chuah S, Pellikka P, Roger V, et al. Role of dobutamine stress echocardiography in predicting outcome in 860 patients with known or suspected coronary artery disease. Circulation. 1998; 97:1474–1480.

    PubMed  CAS  Google Scholar 

  14. Arruda A, Das M, Roger V, et al. Prognostic value of exercise echocardiography in 2,632 patients >=65 years of age. J Am Coll Cardiol. 2001;37:1036–1041.

    Article  PubMed  CAS  Google Scholar 

  15. Lang R.,  Bierig M,  Devereux R,  Flachskampf F,  Foster E,  Pellikka P, et al:   Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology.  J Am Soc Echocardiogr. 2005;18:1440–1463.

    Article  PubMed  Google Scholar 

  16. Feigenbaum H, Armstrong W, Ryan T. Stress echocardiography. In: Feigenbaum H, Armstrong W, Ryan T, eds. Echocardiography. Philadelphia: Lippincott Williams and Wilkins; 2005:488–522.

    Google Scholar 

  17. Feigenbaum H, Armstrong W, Ryan T. Coronary artery disease. In: Feigenbaum H, Armstrong W, Ryan T, eds. Echocardiography. Philadelphia: Lippincott Williams and Wilkins; 2005:437–487.

    Google Scholar 

  18. Ahmad M, Tianrong X, McCulloch M, et al. Real-time three-dimensional dobutamine stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. J Am Coll Cardiol. 2001;37:1303–1308.

    Article  PubMed  CAS  Google Scholar 

  19. Elhendy A, O’Leary E, Xie F, et al. TR P: comparative accuracy of real-time myocardial contrast perfusion imaging and wall motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease. J Am Coll Cardiol. 2004;44:2185–2191.

    Article  PubMed  Google Scholar 

  20. Moir S, Haluska B, Jenkins C, et al. Incremental benefit of myocardial contrast to combine dipyridamole-exercise stress echocardiography for the assessment of coronary artery disease. Circulation, 2004;110:1108–1113.

    Article  PubMed  CAS  Google Scholar 

  21. Ling L, Pellikka P, Mahoney D, et al. Atropine augmentation in dobutamine stress echocardiography: role and incremental value in a clinical practice setting. J Am Coll Cardiol. 1996;28:551–557.

    Article  PubMed  CAS  Google Scholar 

  22. Mor-Avi V, Vignon P, Koch R, et al. Segmental analysis of color kinesis images: new method for quantification of the magnitude and timing of endocardial motion during left ventricular systole and diastole. Circulation. 1997;95:2082–2097.

    PubMed  CAS  Google Scholar 

  23. Smiseth O, Stoylen A, Halfdan I. Tissue Doppler imaging for the diagnosis of coronary artery disease. Curr Opin Cardiol. 2004;19:421–429.

    Article  PubMed  Google Scholar 

  24. Marwick TH. Stress echocardiography. Heart. 2003;89:113–118.

    Article  PubMed  Google Scholar 

  25. Quinones M, Verani M, Haichin R, et al. Exercise echocardiography versus 201T1 single-photon emission computed tomography in evaluation of coronary artery disease: analysis of 292 patients. Circulation. 1992;85:1217–1218.

    Google Scholar 

  26. Fleischmann K, Hunink M, Kuntz K, et al. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA. 1998;280:913–920.

    Article  PubMed  CAS  Google Scholar 

  27. Schinkel A, Bax J, Geleijnse M, et al. Noninvasive evaluation of ischemic heart disease: myocardial perfusion imaging or stress echocardiography?  Eur Heart J. 2003;24: 789–800.

    Article  PubMed  CAS  Google Scholar 

  28. Smart S,  Bhatia A,  Hellman R,  et al. Dobutamine-atropine stress echocardiography and dipyridamole sestamibi scintigraphy for the detection of coronary artery disease: limitations and concordance.  J Am Coll Cardiol. 2000;36:1265–1273.

    Article  PubMed  CAS  Google Scholar 

  29.  Marwick T, D’Hondt A, Baudhuin T, et al. Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy, or both?  J Am Coll Cardiol. 1993;22:159–167.

    Article  PubMed  CAS  Google Scholar 

  30. Geleijnse ML, Elhendy A. Can stress echocardiography compete with perfusion scintigraphy in the detection of coronary artery disease and cardiac risk assessment? Eur J Echocardiogr. 2000;1:12–21.

    Article  PubMed  CAS  Google Scholar 

  31. Senior R, Monaghan M, Becher H et al. Stress echocardiography for the diagnosis and risk stratification of patients with suspected or known coronary artery disease: a critical appraisal. Supported by the British Society of Echocardiography.

    Google Scholar 

  32. Bach D, Muller D, Gros B, et al.  False positive dobutamine stress echocardiograms: characterization of clinical, echocardiographic and angiographic findings.  J Am Coll Cardiol. 1994;24:928–933.

    Article  PubMed  CAS  Google Scholar 

  33. Ha J, Juracan E, Mahoney D, et al. Hypertensive response to exercise: a potential cause for new wall motion abnormality in the absence of coronary artery disease.  J Am Coll Cardiol. 2002;39:323–327.

    Article  PubMed  Google Scholar 

  34. Okeie K, Shimizu M, Yoshio H, et al. Left ventricular systolic dysfunction during exercise and dobutamine stress in patients with hypertrophic cardiomyopathy.  J Am Coll Cardiol. 2000;36:856–863.

    Article  PubMed  CAS  Google Scholar 

  35. Miller D, Ruddy T, Zusman R, et al. Left ventricular ejection fraction response during exercise in asymptomatic systemic hypertension.  Am J Cardiol. 1987;59:409–413.

    Article  PubMed  CAS  Google Scholar 

  36. Mottram P, Haluska B, Yuda S, et al. Patients with a hypertensive response to exercise have impaired systolic function without diastolic dysfunction or left ventricular hypertrophy.  J Am Coll Cardiol. 2004;43:848–853.

    Article  PubMed  Google Scholar 

  37. Geleijnse M, Vigna C, Kasprzak J, et al. Usefulness and limitations of dobutamine-atropine stress echocardiography for the diagnosis of coronary artery disease in patients with left bundle branch block.  Eur Heart J. 2000;21:1666–1673.

    Article  PubMed  CAS  Google Scholar 

  38. Waters DD, Gordon D, Rossouw JE, et al. National Heart, Lung and Blood Institute; American College of Cardiology Foundation. Women’s Ischemic Syndrome Evaluation: current status and future research directions: report of the National Heart, Lung and Blood Institute workshop: October 2–4, 2005: Section 4 lessons from hormone replacement trials. Circulation. 2004;109:e53–e55.

    Article  PubMed  Google Scholar 

  39. Morise AP, Dala JN, Duval RD. Value of a simple measure of estrogen status for improving the diagnosis of coronary artery disease in women. Am J Med. 1993;94:491–496.

    Article  PubMed  CAS  Google Scholar 

  40. Kawano H, Motoyama T, Ohgushi K, et al. Menstrual cyclic variation of myocardial ischemia in premenopausal women with variant angina. Ann Intern Med. 2001;135:977–981. [Erratum in: Ann Intern Med. 2002;136:253.]

    PubMed  CAS  Google Scholar 

  41. Kawano H, Motoyama T, Hirai N, et al. Estradiol supplementation supplementation suppresses hyperventilation-induced attacks in postmenopausal women with variant angina. J Am Cardiol. 2001;37:735–740.

    Article  CAS  Google Scholar 

  42. Schulman SP, Theimann DR, Ouyang P, et al. Effects of acute hormone therapy on recurrent ischemia on postmeopausal women with unstable angina. J Am Coll Cardiol. 2002;39: 231–237.

    Article  PubMed  CAS  Google Scholar 

  43. Rosano GM, Webb CM, Chierchia S, et al. Natural progesterone, but not medroxyprogesterone acetate, enhances the beneficial effect of estrogen on exercise – induced myocardial ischemia in postmenopausal women. J Am Coll Cardiol. 2000;36:2154–2159.

    Article  PubMed  CAS  Google Scholar 

  44. Morise AP, Dalal JN, Duval RD. Frequency of oralestrogen replacement therapy in women with normal and abnormal exercise electrocardiograms and normal coronary arteries by angiogram. Am J Cardiol. 1993;72:1197–1199.

    Article  PubMed  CAS  Google Scholar 

  45. Morise AP, Haddad WJ. Validation of estrogen status as an independent predictor of coronary artery disease presence and extent in women. J Cardiovasc Risk. 1996;3:507–511.

    Article  PubMed  CAS  Google Scholar 

  46. Hlatky MA, Pryor DB Harrell FE Jr, et al. Factors affecting sensitivity and specificity of exercise electrocardiography:multivariable analysis. Am J Med. 1984;77:64–71.

    Article  PubMed  CAS  Google Scholar 

  47. Weiner DA, McGabe C, et al. Exercuse testing for the diagnosis of coronary aretery disease. Am Heart J. 1980;99:811–812.

    Article  PubMed  CAS  Google Scholar 

  48. Guiteras VP, Chaitman BR, Waters DD, et al. Diagnostic accuracy of exercise ECG lead systems in clinical subsets of women. Circulation. 1982;65:1465–1474.

    Article  PubMed  CAS  Google Scholar 

  49. Linhart JW, Laws JG, Satinsky JD. Maximum treadmill exercise electrocardiography in female patients. Circulation. 1974;50:1173–1178.

    PubMed  CAS  Google Scholar 

  50. Sketch MH, Mohiuddin SM, Lynch JD, et al. Significant sex differences in the correlation of electrocardiographic exercise testing and coronary arteriograms. Am J Cardiol. 1975;36: 169–173.

    Article  PubMed  CAS  Google Scholar 

  51. Barolsky SM, Gilbert CA, Faruqui A, et al. Differences in electrocardiographic response to exercise of women and men: a non Bayesian factor. Circulation. 1979;60:1021–1027.

    PubMed  CAS  Google Scholar 

  52. Hung J, Chaitman BR, Lam J, et al. Nonivasive diagnostic test choices for the evaluation of coronary aretery disease in women: a multivariate comparison of cardiac fluoroscopy, exercise electrocardiography and exercise thallium myocardial perfusion scintigraphy. J Am Coll Cardiol. 1984;4:8–16.

    Article  PubMed  CAS  Google Scholar 

  53. Robert AR, Melin JA, Detry JM. Logistic discriminant analysis improves diagnostic accuracy of exercise testing for coronary artery disease in women. Circulation. 1991;83: 1202–1209.

    PubMed  CAS  Google Scholar 

  54. Kwok Y, Kim C, Grady D, Segal M, Redberg R. Meta-analysis of exercise testing to detect coronary aretery disease in women. Am J Cardiol. 1999;83:660–666.

    Article  PubMed  CAS  Google Scholar 

  55. Marwick TH, Anderson T, Williams MJ, et al.: Exercise echocardiography is an accurate and cost-efficient technique for detection of coronary artery disease in women. J Am Coll Cardiol. 1995;26:335–341.

    Article  PubMed  CAS  Google Scholar 

  56. Grundy SM, Pasternak R, Greenland P, et al. Assessment of cardiovascular risk by use of multiple risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circlulation. 1990;100:1481–1492.

    Google Scholar 

  57. Roger VL, Pellikka PA, Bell MR, et al. Sex and test verification bias: impact on the diagnostic value of exercise echocardiography. Circulation. 1997;95:405–410.

    PubMed  CAS  Google Scholar 

  58. Mieres JH, Shaw LJ, Arai A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association. Circulation. 2005;111:682–696.

    Article  PubMed  Google Scholar 

  59. Kim C, Kwok YS, Heagerty P, et al. Pharmacologic stress testing for coronary artery disease: a meta-analysis. Am Heart J. 2001;142:934–944.

    Article  PubMed  CAS  Google Scholar 

  60. Lewis JF, Lin L, McGorray S, et al. Dobutamine stress echocardiography in women with chest pain. Pilot phase data from the National Heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE). J Am Coll Cardiol. 1999;33:1462–1468.

    Article  PubMed  CAS  Google Scholar 

  61. Heupler S, Mehta R, Lobo A, et al. Prognostic implications of exercise echocardiography in women with known or suspected coronary artery disease. J Am Coll Cardiol. 1997;30: 414–420.

    Article  PubMed  CAS  Google Scholar 

  62. Sawada SG, Ryan T, Fineberg NS, et al. Exercise echocardiographic detection of coronary artery disease in women. J Am Coll Cardiol. 1989;14:1440–1447.

    Article  PubMed  CAS  Google Scholar 

  63. Dionosopoulos PN, Collins JD, Smart SC, et al. The value of dobutamine stress echocardiography for the detection of coronary artery disease in women. J Am Soc Echocardiogr. 1997;10:811–817.

    Article  Google Scholar 

  64. Elhendy A, Geleijnese ML, van Domburg RT, et al. Gender differences in the accuracy of dobutamine stress echocardiography for the diagnosis of coronary artery disease. Am J Cardiol. 1997;80:1414–1418.

    Article  PubMed  CAS  Google Scholar 

  65. Masini M, Picano E, Lattanzi F, et al. High dose dipyridamole-echocardiography test in women: correlation with exercise-electrocardiography test and coronary arteriography. J Am Coll Cardiol. 1988;12:682–685.

    PubMed  CAS  Google Scholar 

  66. Severi S, Picano E, Michelassi C, et al. Diagnostic and prognostic value of dipyridamole echocardiography in patients with suspected coronary artery disease. Comparison with exercise electrocardiography. Circulation. 1994;89:1160–1173.

    PubMed  CAS  Google Scholar 

  67. Ho YL, Wu CC, Huang PJ, et al. Assessment of coronary artery disease in women by dobutamine stress echocardiography: comparison with stress thallium-201 single-photon emission computed tomography and exercise electrocardiography. Am Heart J. 1998;135: 655–662.

    Article  PubMed  CAS  Google Scholar 

  68. Williams MJ, Marwick TH, O’Gorman D, et al. Comparison of exercise echocardiography with an exercise score to diagnose coronary artery disease in women. Am J Cardiol. 1994;74:435–438.

    Article  PubMed  CAS  Google Scholar 

  69. Senior R, Lahiri A. Enhanced detection of myocardial ischemia by stress dobutamine echocardiography utilizing the “biphasic” response of wall thickening during low and high dose dobutamine infusion. J Am Coll Cardiol 1995;26:26–32.

    Article  PubMed  CAS  Google Scholar 

  70. Perrone-Filardi P, Pace L, Prastaro M et al. Assessment of myocardial viability in patients with chronic coronary artery disease: Rest-4 hour-24 hour 201Tl tomography versus dobutamine echocardiography. Circulation. 1996;94:2712–2719.

    PubMed  CAS  Google Scholar 

  71. Arnese M, Cornel JH, Salustri A et al. Prediction of improvement of regional left ventricular function after surgical revascularization: a comparison of low dose dobutamine echocardiography with 201Tl single photon emission computed tomography. Circulation. 1995;91: 2748–2752.

    PubMed  CAS  Google Scholar 

  72. Haque T, Furukawa T, Takahashi M, et al. Identification of hybernating myocardium by dobutamine stress echocardiography: comparison with thallium-201 reinjection imaging. Am Heart J. 1995;130:553–563.

    Article  PubMed  CAS  Google Scholar 

  73. Skopicki HA, Weissman NJ, Rose GA et al. Thallium imaging, dobutamine echocardiography, and photon emission tomography for the detection of myocardial viability. J Am Coll Cardiol. 1996;27:162A abstract.

    Article  Google Scholar 

  74. Vanoverschelde JJ, D’Hondt AM, Marwick T et al. Head to head comparison of exercise redistribution-reinjection thallium single photon emission tomography and low dose dobutamine echocardiography for prediction of reversibility of chronic left ventricular ischemic dysfunction. J Am Coll Cardiol. 1996;28:432–442.

    Article  PubMed  CAS  Google Scholar 

  75. Bax JJ, Cornel JH, Vissner FC, et al. Prediction of recovery or regional left ventricular dysfunction following revascularization: comparison of F18-fluorodeoxyglucose SPECT, thallium stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol. 1996;28:558–564.

    Article  PubMed  CAS  Google Scholar 

  76. Charney R, Schwinger ME, Chung J, et al. Dobutamine echocardiography and resting-redistribution thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J. 1994;128:864–869.

    Article  PubMed  CAS  Google Scholar 

  77. Perrone-Filardi P, Pace L, Prastaro M, et al. Dobutamine stress echocardiography predicts improvement of hyoperfused dysfunctional myocardium after revascularization in patients with coronary artery disease. Circulation. 1995;91:2556–2565.

    PubMed  CAS  Google Scholar 

  78. Cigarroa CG, deFilippi CR, Brickner E, et al. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation. 1993;88:430–436.

    PubMed  CAS  Google Scholar 

  79. Marzullo P, Parodi O, Reisenhofer B et al. Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol. 1993;71:166–172.

    Article  PubMed  CAS  Google Scholar 

  80. La Canna G, Alfieri O, Giubbini R, et al. Echocardiography during infusion of dobutamine for identification of reversible dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol. 1994;23:617–626.

    Article  PubMed  Google Scholar 

  81. Seghal R, Lambert KL, Saham GM, et al. Prediction of viable myocardium by dobutamine echocardiography in patients with chronic left ventricular dysfunction. Clin Res. 1994;42:160A. Abstract.

    Google Scholar 

  82. Afridi I, Kleiman NS, Raizner AE, et al. Dobutamine echocardiography in myocardial hibernation: optimal dose and accuracy in predicting recovery of ventricular function after coronary revascularization. Circulation. 1995;91:663–670.

    PubMed  CAS  Google Scholar 

  83. deFillipe CR, Willet DR, Irani WN et al. Comparison of myocardial contrast echocardiography and low dose dobutamine stress echocardiography in predicting recovery of left ventricular function after revascularization after coronary revascularization in chronic ischemic heart disease. Circulation. 1995;91:990–998.

    Google Scholar 

  84. Bonow RO. Identification of viable myocardium. Circulation. 1996 December 1;94(11):2674–2680.

    Google Scholar 

  85. Bax JJ, Wijns W, Cornel JH, et al. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol. 1997 November 15;30(6):1451–1460.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kameswari Maganti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Maganti, K., Rigolin, V.H. (2009). Principles of Interpretation of Stress Echocardiography. In: Herzog, E., Chaudhry, F. (eds) Echocardiography in Acute Coronary Syndrome. Springer, London. https://doi.org/10.1007/978-1-84882-027-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-027-2_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-026-5

  • Online ISBN: 978-1-84882-027-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics