Skip to main content

TGF-β/BMP Signaling in Pulmonary Vascular Disease

  • Chapter
Vascular Complications in Human Disease

Abstract

The transforming growth factor β (TGF-β) superfamily is a group of multifunctional proteins with over 35 distinct members, including TGF-β, activins, bone morphogenetic proteins (BMPs), and growth differentiation factors.1 They all have profound effects on developmental processes ranging from soft tissue and skeletal development to vasculogenesis.2 The effects are not limited to embryogenesis alone as these molecules are also known to play significant roles in the maintenance and control of adult tissues.24 Although TGF-β is the prototypic member of the family, the largest group of cytokines within the TGF-β superfamily comprises the BMPs. They were originally identified as molecules regulating growth and differentiation of bone and cartilage. However, BMPs are now known to regulate growth, differentiation, and apoptosis in a diverse number of cells lines, including mesenchymal and epithelial cells.24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev 2002;23:787–823.

    Article  PubMed  CAS  Google Scholar 

  2. Miyazono K, Maeda S, Imamua T. BMP receptor signaling: Transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 2005;16:251–263.

    Article  PubMed  CAS  Google Scholar 

  3. Kawabata M, Imamura T, Miyazano K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 1998;9:49–61.

    Article  PubMed  CAS  Google Scholar 

  4. Massague J, Chen Y-G. Controlling TGF-β signaling. Genes Dev 2000;14:627–644.

    PubMed  CAS  Google Scholar 

  5. The International PPH Consortium, Lane KB, Machado RD, Pauciulo MW, et al. Heterozygous germ-line mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat Genetics 2000;26:81–84.

    Article  CAS  Google Scholar 

  6. Deng Z, Morse JH, Slager SL, et al. Familial primary pulmonary hypertension (Gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000;67:737–744.

    Article  PubMed  CAS  Google Scholar 

  7. Machado RD, Aldred MA, James V, et al. Mutations of the TGF-β type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mut 2006;27:121–132.

    Article  PubMed  CAS  Google Scholar 

  8. Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family. J Med Genet 2000;37:741–745.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 1996;13:189–195.

    Article  PubMed  CAS  Google Scholar 

  10. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science 2002;296:1646–1647.

    Article  PubMed  CAS  Google Scholar 

  11. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005;19:2783–2810.

    Article  PubMed  CAS  Google Scholar 

  12. Shi W, Chen H, Sun J, et al. Overexpression of Smurf1 negatively regulates mouse embryonic lung branching morphogenesis by specifically reducing Smad1 and Smad5 proteins. Am J Physiol Lung Cell Mol Physiol. 2004;286:L293–L300.

    Article  PubMed  CAS  Google Scholar 

  13. Chen HB, Shen J, Ip YT, Xu L. Identification of phosphatases for Smad in the BMP/DPP pathway. Genes Dev 2006;20:648–653.

    Article  PubMed  CAS  Google Scholar 

  14. Nohe A, Keating E, Knaus P, Petersen NO. Signal transduction of bone morphogenetic protein receptors. Cell Signal 2004;16:291–299.

    Article  PubMed  CAS  Google Scholar 

  15. Massague J. Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev 2003;17:2993–2997.

    Article  PubMed  CAS  Google Scholar 

  16. Nohe A, Hassel S, Ehrlich M, et al. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem 2002;277:5330–5338.

    Article  PubMed  CAS  Google Scholar 

  17. Loyd JE, Primm RK, Newman JH. Familial primary pulmonary hypertension: clinical patterns. Am Rev Respir Dis 1984;129:194–197.

    PubMed  CAS  Google Scholar 

  18. Newman JH, Trembath RC, Morse JA, et al. Genetic basis of pulmonary arterial hypertension: Current understanding and future directions. J Am Coll Cardiol 2004;43:S33–S39.

    Article  CAS  Google Scholar 

  19. The International PPH Consortium, Lane KB, Machado RD, Pauciulo MW, et al. Heterozygous germ-line mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat Genet 2000;26:81–84.

    Article  PubMed  CAS  Google Scholar 

  20. Deng Z, Morse JH, Slager SL, et al. Familial primary pulmonary hypertension (Gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000;67:737–744.

    Article  PubMed  CAS  Google Scholar 

  21. Machado RD, Aldred MA, James V, et al. Mutations of the TGF-β type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mut 2006;27:121–132.

    Article  PubMed  CAS  Google Scholar 

  22. Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family. J Med Genet 2000;37:741–745.

    Article  PubMed  CAS  Google Scholar 

  23. Rudarakanchana N, Flanagan JA, Chen H, et al. Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension. Hum Mol Genet 2002;11:1517–1525.

    Article  PubMed  CAS  Google Scholar 

  24. Nishihara A, Watabe T, Imamura T, Miyazono K. Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with [rimary [ulmonary hypertension. Mol Biol Cell 2002;13:3055–3063.

    Article  PubMed  CAS  Google Scholar 

  25. Yu PB, Beppu H, Kawai N, Li E, Bloch KD. Bone morphogenetic protein (BMP) type II receptor deletion reveals BMP ligand-specific gain of signaling in pulmonary artery smooth muscle cells. J Biol Chem 2005;280:24443–24450.

    Article  PubMed  CAS  Google Scholar 

  26. Long L, MacLean MR, Jeffery TK, et al. Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 2006;98:818–827.

    Article  PubMed  CAS  Google Scholar 

  27. Yang X, Long L, Southwood M, et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 2005;96:1053–1063.

    Article  PubMed  CAS  Google Scholar 

  28. Morrell NW, Yang X, Upton PD, et al. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-ta1 and bone morphogenetic proteins. Circulation 2001;104:790–795.

    Article  PubMed  CAS  Google Scholar 

  29. Trembath RC, Thomson JR, Machado RD, et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med 2001;345:325–334.

    Article  PubMed  CAS  Google Scholar 

  30. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation status of the endothelium via two distinct TGF-β receptors. EMBO J 2002;21:1743–1753.

    Article  PubMed  CAS  Google Scholar 

  31. Goumans MJ, Valdimarsdottir G, Itoh S, et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGF[beta]/ALK5 signaling. Mol Cell 2003;12:817–828.

    Article  PubMed  CAS  Google Scholar 

  32. Itoh S, Thorikay M, Kowanetz M, et al. Elucidation of Smad requirement in rransforming growth factor-beta type I receptor-induced responses. J Biol Chem 2003;278:3751–3761.

    Article  PubMed  CAS  Google Scholar 

  33. Kowanetz M, Valcourt U, Bergstrom R, Heldin CH, Moustakas A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor ta and bone morphogenetic protein. Mol Cell Biol 2004;24:4241–4254.

    Article  PubMed  CAS  Google Scholar 

  34. Zeisberg M, Hanai Ji, Sugimoto H, et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003;9:964–968.

    Article  PubMed  CAS  Google Scholar 

  35. Zeisberg M, Shah AA, Kalluri R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 2005;280:8094–8100.

    Article  PubMed  CAS  Google Scholar 

  36. Sheares KKK, Jeffery TK, Long L, Yang X, Morrell NW. Differential effects of TGF-β1 and BMP-4 on the hypoxic induction of cyclooxygenase-2 in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2004;287:L919–L927.

    Article  PubMed  CAS  Google Scholar 

  37. Jeffery TK, Upton PD, Trembath RC, Morrell NW. BMP4 inhibits proliferation and promotes myocyte differentiation of lung fibroblasts via Smad1 and JNK pathways. Am J Physiol Lung Cell Mol Physiol 2005;288:L370–L378.

    Article  PubMed  CAS  Google Scholar 

  38. Rosenzweig BL, Imamura T, Okadome T, et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 1995;92:7632–7636.

    Article  PubMed  CAS  Google Scholar 

  39. Atkinson C, Stewart S, Upton PD, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 2002;105:1672–1678.

    Article  PubMed  CAS  Google Scholar 

  40. Du L, Sullivan CC, Chu D, et al. Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 2003;348:500–509.

    Article  PubMed  CAS  Google Scholar 

  41. Rondelet B, Kerbaul F, Van Beneden R, et al. Prevention of pulmonary vascular remodeling and of decreased BMPR-2 expression by losartan therapy in shuntinduced pulmonary hypertension. Am J Physiol 2005;289:H2319–H2324.

    CAS  Google Scholar 

  42. Takahashi H, Goto N, Kojima Y, et al. Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2006;290:L450–L458.

    Article  PubMed  CAS  Google Scholar 

  43. Richter A, Yeager ME, Zaiman A, Cool CD, Voelkel NF, Tuder RM. Impaired transforming growth factor-β signaling in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2004;170:1340–1348.

    Article  PubMed  Google Scholar 

  44. Botney MD, Bahadori L, Gold LI. Vascular remodelling in primary pulmonary hypertension: potential role for transforming growth factor-beta. Am J Pathol 1994;144:286–295.

    PubMed  CAS  Google Scholar 

  45. Zhang S, Fantozzi I, Tigno DD, et al. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2003;285:L740–L754.

    PubMed  CAS  Google Scholar 

  46. Valdimarsdottir G, Goumans MJ, Rosendahl A, et al. Stimulation of Id1 expression by bone morphogenetic proetin is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 2002;106:2263–2270.

    Article  PubMed  CAS  Google Scholar 

  47. Teichert-Kuliszewska K, Kutryk MJB, Kuliszewski MA, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 2006;98:209–217.

    Article  PubMed  CAS  Google Scholar 

  48. McDonald PP, Fadok VA, Bratton D, Henson PM. Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-β in macrophages that have ingested apoptotic cells. J Immunol 1999;163:6164–6172.

    PubMed  CAS  Google Scholar 

  49. Beppu H, Kawabata M, Hamamoto T, et al. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 2000;221:249–258.

    Article  PubMed  CAS  Google Scholar 

  50. Yang X, Castilla LH, Xin X, Li C, Gotay J, Wienstein M, Liu PP, Deng CX. Angiogenesis defects and mesenchymal apoptosis in mice lacking smad5. Development 1999;126:1571–1580.

    PubMed  CAS  Google Scholar 

  51. Beppu H, Ichinose F, Kawai N, et al. BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 2004;287:L1241–L1247.

    Article  PubMed  CAS  Google Scholar 

  52. Song Y, Jones JE, Beppu H, Keaney JF, Jr., Loscalzo J, Zhang YY. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 2005;112:553–562.

    Article  PubMed  CAS  Google Scholar 

  53. Machado RD, James V, Southwood M, et al. Investigation of second genetic hits at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension. Circulation 2005;111:607–613.

    Article  PubMed  CAS  Google Scholar 

  54. Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 1999;18:3098–3103.

    Article  PubMed  CAS  Google Scholar 

  55. West J, Fagan K, Steudel W, et al. Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPR-II gene in smooth muscle. Circ Res 2004;94:1109–1114.

    Article  PubMed  CAS  Google Scholar 

  56. Delot EC, Bahamonde ME, Zhao M, Lyons KM. BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 2003;130:209–220.

    Article  PubMed  CAS  Google Scholar 

  57. Roberts KE, McElroy JJ, Wong WPK, et al. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J 2004;24:371–374.

    Article  PubMed  CAS  Google Scholar 

  58. Shovlin CL, Letarte M. Hereditary haemorrhagic telangiectasia and pulmonary arteriovenous malformations: issues in clinical management and review of pathogenic mechanisms. Thorax 1999;54:714–729.

    Article  PubMed  CAS  Google Scholar 

  59. Shovlin CL, Guttmacher AE, Buscarini E, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 2000;91:66–67.

    Article  PubMed  CAS  Google Scholar 

  60. McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 1994;8:345–351.

    Article  PubMed  CAS  Google Scholar 

  61. Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 1996;13:189–195.

    Article  PubMed  CAS  Google Scholar 

  62. Pastella P, Sabba C, Lenato GM, et al. Endoglin gene mutations and polymorphisms in Italian patients with hereditary haemorrhagic telangiectasia. Clin Genet 2003;63:536–540.

    Article  Google Scholar 

  63. Lesca G, Plauchu H, Coulet F, et al; French Rendu-Osler Network. Molecular screening of ALK1/ACVRL1 and ENG genes in hereditary hemorrhagic telangiectasia in France. Hum Mutat 2004;23:289–299.

    Article  PubMed  CAS  Google Scholar 

  64. Cymerman U, Vera S, Karabegovic A, Abdalla S, Letarte M. Characterization of 17 novel endoglin mutations associated with hereditary hemorrhagic telangiectasia. Hum Mutat 2003;21:482–492.

    Article  PubMed  CAS  Google Scholar 

  65. Abdalla SA, Cymerman U, Johnson RM, Deber CM, Letarte M. Disease-associated mutations in conserved residues of ALK-1 kinase domain. Eur J Hum Genet 2003;11:279–287.

    Article  PubMed  CAS  Google Scholar 

  66. Cole SG, Begbie ME, Wallace GM, Shovlin CL. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 2005;42:577–582.

    Article  PubMed  CAS  Google Scholar 

  67. Carmaliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6:389–395.

    Article  CAS  Google Scholar 

  68. Pepper MS, Vassalli JD, Orci L, Montesano R. Biphasic effects of transforming growth factor-beta 1 on in vitro angiogenesis. Exp Cell Res 1993;204;356–363.

    Article  PubMed  CAS  Google Scholar 

  69. Goumans MJ, Valdimarsdottir G, Itoh S, et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGF-β/ALK5 signaling. Mol Cell 2004;12:817–828.

    Article  Google Scholar 

  70. Ota T, Fujii M, Sugizaki T, et al. Targets of transcriptional regulation by two distinct type 1 receptors for transforming growth factor-β in human umbilical vein endothelial cells. J Cell Physiol 2002;193:299–318.

    Article  PubMed  CAS  Google Scholar 

  71. Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF-β type 1 receptors. EMBO J 2002;1743–1753.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Davies, R.J., Morrell, N.W. (2008). TGF-β/BMP Signaling in Pulmonary Vascular Disease. In: Abraham, D., Dashwood, M., Handler, C., Coghlan, G. (eds) Vascular Complications in Human Disease. Springer, London. https://doi.org/10.1007/978-1-84628-919-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-919-4_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-918-7

  • Online ISBN: 978-1-84628-919-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics