Skip to main content

Coronary Angiography

  • Chapter
Cardiovascular Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Radiographic Imaging

  1. Togni M, Balmer F, Pfiffner D, et al. Percutaneous coronary interventions in Europe 1992–2001. Eur Heart J 2004;25:208–1213.

    Google Scholar 

  2. American Heart Association. Heart Disease and Stroke Statistics—2005 Update. Dallas: American Heart Association.

    Google Scholar 

  3. Judkins ML. Angiographic equipment; the cardiac catheterization laboratory. In: Abrams HL, ed. Coronary Arteriography: A Practical Approach. Boston: Little, Brown, 1983:1–51.

    Google Scholar 

  4. Hirshfeld JW, Balter S, Brinker JA, et al. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures. Circulation 2005;111:511–532.

    PubMed  Google Scholar 

  5. Macorski A. Medical Imaging Systems. Englewood, NJ: Prentice-Hall, 1983:36–62.

    Google Scholar 

  6. Pepine CJ, Allen HD, Bashore TM, et al. ACC/AHA guidelines for cardiac catheterization and cardiac catheterization laboratories. Circulation 1991;84:2227–2247.

    Google Scholar 

  7. Holmes DR, Bove AA, Wondrow MA et al. New technique for decreasing x-ray exposure without decreasing image quality during cardiac catheterization. Mayo Clin Proc 1986;61:321–338

    PubMed  Google Scholar 

Radiation Protection

  1. Judkins MP. Guidelines for radiation protection in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn 1984;10:87–92.

    PubMed  CAS  Google Scholar 

  2. Miller SW, Castronovo FP. Radiation exposure and protection in cardiac catheterization laboratories. Am J Cardiol 1985;55:171–176.

    PubMed  CAS  Google Scholar 

  3. Pitney MR, Allan RM, Giles RW, et al. Modifying fluoroscopic views reduces operator radiation exposure during coronary angioplasty. J Am Coll Cardiol 1994;24:1660–1663.

    PubMed  CAS  Google Scholar 

  4. Zorzetto M, Bernardi G, Morocutti G, Fontanelli A. Radiation exposure to patients and operators during diagnostic catheterization and coronary angioplasty. Cathet Cardiovasc Intervent 1997;40:348–351.

    CAS  Google Scholar 

  5. Rueter FG. Physician and patient exposure during cardiac catheterization. Circulation 1978;58:135–139.

    Google Scholar 

  6. Geise RA, Hunter DW. Personnel exposure during fluoroscopy procedures. Postgrad Radiol 1988;8:162–173.

    Google Scholar 

  7. National Council on Radiation Protection and Measurements (NCRP). Recommendations on Limits for Exposure to Ionizing Radiation. Report No. 91. Bethesda, MD: NCRP Publications, 1987.

    Google Scholar 

  8. National Council on Radiation Protection and Measurements. Limitation of Exposure to Ionizing Radiation. Report No. 116. Bethesda, MD: NCRP, 1993.

    Google Scholar 

  9. ACC expert consensus document: radiation safety in the practice of cardiology. J Am Coll Cardiol 1998;31:892–913.

    Google Scholar 

  10. Gertz EW, Wisneski JA, Gould RG, Akin JR. Improved radiation protection for physicians performing cardiac catheterization. Am J Cardiol 1982;50:1283–1286.

    PubMed  CAS  Google Scholar 

  11. Judkins MP, Laboratory Performance Standards Committee. Guidelines for radiation protection in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn 1984;10:87–92.

    PubMed  CAS  Google Scholar 

  12. National Council on Radiation Protection and Measurements (NCRP). Quality Assurance for Diagnostic Imaging. Report No. 99. Bethesda, MD: NCRP Publications, 1990.

    Google Scholar 

Personnel

  1. Leaman DM, Zelis RF. What is the appropriate “dress code” for the cardiac catheterization laboratory? Cathet Cardiovasc Diagn 1983;9:33–38.

    PubMed  CAS  Google Scholar 

Technical History of Coronary Angiography

  1. Diguglielmo L, Guttaduro M. Roentgenologic study of coronary arteries in living man. Acta Radiol 1952;suppl 97.

    Google Scholar 

  2. Baltaxe HA, Amplatz K, Levin DC. Coronary Angiography. Springfield, IL: Charles C Thomas, 1973:3–9.

    Google Scholar 

  3. Bellman S, Frank HA, Lambert PB, Littman D, Williams JA. Coronary angiography I. Differential opacification of the aortic stream by catheters of special design—experimental development. N Engl J Med 1960;262:325–329.

    PubMed  CAS  Google Scholar 

  4. Sones FM Jr, Shirey EK. Cine coronary arteriography. Mod Concepts Cardiovasc Dis 1962;31:735–738.

    PubMed  Google Scholar 

  5. Judkins MP. Selective coronary arteriography: part I: a percutaneous transfemoral technic. Radiology 1967;89:815–824.

    PubMed  CAS  Google Scholar 

  6. Ricketts HJ, Abrams HL. Percutaneous selective coronary cine arteriography. JAMA 1962;181:620–624.

    PubMed  CAS  Google Scholar 

  7. Amplatz K, Formanek G, Stanger P, Wilson W. Mechanics of selective coronary artery catheterization via femoral approach. Radiology 1967;89:1040–1047.

    PubMed  CAS  Google Scholar 

  8. Schoonmaker FW, King SB. Coronary arteriography by the single catheter percutaneous technique. Circulation 1974;50:735.

    PubMed  CAS  Google Scholar 

  9. Paulin S. Coronary angiography: a technical, anatomic and clinical study. Acta Radiol 1964;suppl 233.

    Google Scholar 

Patient Preparation

  1. Eisenberg RL, Bank WO, Hedgecock MW. Renal failure after major angiography. Am J Med 1980;68:43–46.

    PubMed  CAS  Google Scholar 

  2. R’Obbins JA, Rose SP. Partial thromboplastin time as a screening test. Ann Intern Med 1979:90:796–802.

    CAS  Google Scholar 

  3. Nawaz S, Cleveland T, Gaines PA, Chan P. Clinical risk associated with contrast angiography in metformin treated patients: a clinical review. Clin Radiol 1998;53(5):342–344.

    PubMed  CAS  Google Scholar 

  4. Stevens MA, McCullough PA, Tobin KJ, et al. A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: results of the P.R.I.N.C.E. Study. Prevention of Radiocontrast Induced Nephropathy Clinical Evaluation. J Am Coll Cardiol 1999;33(2):403–411.

    PubMed  CAS  Google Scholar 

Technique

  1. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol 1952;39:368–376.

    Google Scholar 

  2. Dotter CT, Rosch J, Robinson M. Fluoroscopic guidance in femoral artery puncture. Radiology 1978;127:266–267.

    PubMed  CAS  Google Scholar 

  3. Judkins MP, Kidd HJ, Frische LH, Dotter CT. Lumen—following safety J-guide for catheterization of tortuous vessels. Radiology 1967;88:1127–1130.

    PubMed  CAS  Google Scholar 

  4. Ovitt TW, Durst S, Moore R, Amplatz K. Guide wire thrombogenicity and its reduction. Radiology 1974;111:43–46.

    PubMed  CAS  Google Scholar 

  5. Eisenberg RL, Mani RL, McDonald EJ. The complication rate of catheter angiography by direct puncture through aortofemoral bypass grafts. AJR 1976;126:814–816.

    PubMed  CAS  Google Scholar 

  6. Giustra PE, Root JA, Killoran PJ. Percutaneous selective visceral catheterization through aortofemoral Dacron prosthesis. Radiology 1978;126:261.

    PubMed  CAS  Google Scholar 

  7. Pollard SD, Munks K, Wales C, et al. Position and Mobilisation Post-Angiography Study (PAMPAS): a comparison of 4.5 hours and 2.5 hours bed rest. Heart 2003;89:447–448.

    PubMed  CAS  Google Scholar 

  8. Archbold RA, Robinson NM, Schilling RJ. Radial artery access for coronary angiography and percutaneous coronary intervention. BMJ 2004;329:443–446.

    PubMed  Google Scholar 

  9. Nagai S, Abe S, Sato T, et al. Ultrasonic assessment of vascular complications in coronary angiography and angioplasty after transradial approach. Am J Cardiol 1999;83:180–186.

    PubMed  CAS  Google Scholar 

  10. Kern MJ, Cohen M, Talley JD, et al. Early ambulation after 5 French diagnostic cardiac catheterization: results of a multi-center trial. J Am Coll Cardiol 1990;15:1475–1483.

    PubMed  CAS  Google Scholar 

  11. Koreny M, Riedmuller E, Nikfardjam M, Siostrzonek P, Mullner M. Arterial puncture closing devices compared with standard manual compression after cardiac catheterization: systematic review and meta-analysis. JAMA 2004;291:350–357.

    PubMed  CAS  Google Scholar 

  12. Pande AK, Meier B, Urban P, et al. Coronary angiography with four French catheters. Am J Cardiol 1992;70:1085–1086.

    PubMed  CAS  Google Scholar 

  13. Abbott JA, Lipton MJ, Kosek J, Hayashi T, Lee FCS. Cardiac trauma from angiographic injections: a quantitative study. Circulation 1978;57:91–98.

    PubMed  CAS  Google Scholar 

  14. Prewitt KC, Zen B, Wortham DC, Pearson C. Increased risk of coronary artery dissection during coronary angiography with 6F catheters. Angiology 1993;44:107–113.

    PubMed  CAS  Google Scholar 

Contrast Material

  1. Dawson P. Conventional angiography. In: Skucas J, ed. Radiographic Contrast Agents, 2nd ed. Rockville MD: Aspen, 1989:152.

    Google Scholar 

  2. Paulin S, Adams DF. Increased ventricular fibrillation during coronary arteriography with a new contrast medium preparation. Radiology 1971;101:45–50.

    PubMed  CAS  Google Scholar 

  3. Murdock DK, Euler DE, Kozeny G, Murdock JD, Loeb HS, Scanlon PJ. Ventricular fibrillation during coronary angiography in dogs: the role of calcium-binding additives. Am J Cardiol 1984;54:897–901.

    PubMed  CAS  Google Scholar 

  4. Zukerman LS, Friehling TD, Wolf NM, Meister SG, Nahass G, Kowey PR. Effect of calcium-binding additives on ventricular fibrillation and repolarization changes during coronary angiography. J Am Coll Cardiol 1987;10:1249–1253.

    PubMed  CAS  Google Scholar 

  5. Morris TW, Sahler LG, Fischer HW. Calcium binding by radiopaque media. Invest Radiol 1982;17:501–505.

    PubMed  CAS  Google Scholar 

  6. Piao ZE, Murdock DK, Hwang MH, Raymond RM, Scanlon PJ. Contrast media-induced ventricular fibrillation: a comparison of Hypaque-76, Hexabrix, and Omnipaque. Invest Radiol 1988;23:466–470.

    PubMed  CAS  Google Scholar 

  7. Fischer HW. Catalog of intravascular contrast media. Radiology 1986;159:561–563.

    PubMed  CAS  Google Scholar 

  8. Ritchie JL, Nissen SE, Douglas JS, et al., American College of Cardiology Cardiovascular Imaging Committee. Use of nonionic or low osmolar contrast agents in cardiovascular procedures. J Am Coll Cardiol 1993;21:269–273.

    PubMed  CAS  Google Scholar 

  9. Gertz EW, Wisneski JA, Miller R, et al. Adverse reactions of low osmolality contrast media during cardiac angiography: A prospective randomized multicenter study. J Am Coll Cardiol 1992;19:899–906.

    PubMed  CAS  Google Scholar 

  10. Barrett BJ, Parfrey PS, Vavasour HM, O’Dea F, Kent G, Stone E. A comparison of non-ionic, low-osmolality radiocontrast agents with ionic, high-osmolality agents during cardiac catheterization. N Engl J Med 1992;326:431–436.

    PubMed  CAS  Google Scholar 

  11. Missri J, Jeresaty RM. Ventricular fibrillation during coronary angiography: reduced incidence with nonionic contrast media. Cathet Cardiovasc Diagn 1990;19:4–7.

    PubMed  CAS  Google Scholar 

  12. Wilson RF, White CW. Intracoronary papaverine: an ideal vasodilator for studies of the coronary circulation. Circulation 1986;73:444–451.

    PubMed  CAS  Google Scholar 

  13. Bookstein JJ, Higgens CB. Comparative efficacy of coronary vasodilatory methods. Invest Radiol 1977;12:121–127.

    PubMed  CAS  Google Scholar 

  14. White CW, Eckberg DL, Inasaka T, Abboud FM. Effects of angiographic contrast media on sino-atrial nodal function. Cardiovasc Res 1976;10:214–223.

    PubMed  CAS  Google Scholar 

  15. Eckberg DL, White CW, Kioschos JM, Abboud FM. Mechanisms mediating bradycardia during coronary arteriography. J Clin Invest 1974;54:1455–1461.

    PubMed  CAS  Google Scholar 

  16. Wilson RF, White CW. Iohexol does not have minimal effects on coronary hemodynamics. Circulation 1986;74(suppl II):405 (abstr).

    Google Scholar 

  17. Bettmann MA, Bourdillon PD, Barry WH, Brush KA, Levin DC. Contrast agents for cardiac angiography: effects of a nonionic agent vs. a standard ionic agent. Radiology 1984;153:583–587.

    PubMed  CAS  Google Scholar 

  18. Mancini GBJ, Bloomquist JN, Bhargava V, et al. Hemodynamic and electrocardiographic effects in man of a new nonionic contrast agent (iohexol): advantages over standard ionic agents. Am J Cardiol 1983;51:1218–1222.

    PubMed  CAS  Google Scholar 

  19. Hirshfeld JW, Laskey W, Martin JL, Groh WC, Untereker W, Wolf GL. Hemodynamic changes induced by cardiac angiography with ioxaglate: comparison with diatrizoate. J Am Coll Cardiol 1983;2:954–957.

    PubMed  Google Scholar 

  20. Thomson KR, Evill CA, Fritzsche J, Beness GT. Comparison of iopamidol, ioxaglate and diatrizoate during coronary arteriography in dogs. Invest Radiol 1980;15:234–241.

    PubMed  CAS  Google Scholar 

  21. Feldman RL, Jalowiec DA, Hill JA, Lambert CR. Contrast media-related complications during cardiac catheterization using Hexabrix or Renografin in high risk patients. Am J Cardiol 1988;61:1334–1337.

    PubMed  CAS  Google Scholar 

  22. Yamazaki H, Banka VS, Bodenheimer MM, Hattori S, Agarwal JB, Helfant RH. Differential effects of Renografin-76 on the ischemic and nonischemic myocardium. Am J Cardiol 1981;47:597–602.

    PubMed  CAS  Google Scholar 

  23. Cohn PF, Horn HR, Teicholz LE, Kreulen TH, Herman MV, Gorlin R. Effects of angiographic contrast medium on left ventricular function in coronary artery disease. Am J Cardiol 1973;32:21–26.

    PubMed  CAS  Google Scholar 

  24. Klow NE, Mortensen E, Refsum H. Left ventricular systolic and diastolic function during coronary arteriography before and after acute left ventricular failure in dogs. A comparison between iodixanol, iohexol and ioxaglate. Acta Radiol 1991;32:124–129.

    PubMed  CAS  Google Scholar 

  25. Powe NR, Davidoff AJ, Moore RD, et al. Net costs from three perspectives of using low versus high osmolality contrast medium in diagnostic angiocardiography. J Am Coll Cardiol 1993;21:1701–1709.

    PubMed  CAS  Google Scholar 

  26. Mark AL. The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol 1983;1:90–102.

    PubMed  CAS  Google Scholar 

  27. Palomo AR, Schwartz AM, Trohman RG, Chahine RA, Myerburg RJ, Kessler KM. Cardiac arrhythmias associated with prophylactic pacing during coronary angiography. Am J Cardiol 1986;58:100–103.

    PubMed  CAS  Google Scholar 

  28. Lehmann MH, Cameron A, Kemp HG. Increased risk of ventricular fibrillation associated with temporary pacemaker use during coronary angiography. PACE 1983;6:923–929.

    PubMed  CAS  Google Scholar 

  29. Stormorken H, Skalpe IO, Testart MC. Effect of various contrast media on coagulation, fibrinolysis, and platelet function: an in vitro and in vivo study. Invest Radiol 1986;21:348–354.

    PubMed  CAS  Google Scholar 

  30. Dawson P, Hewitt P, Mackie IJ, Machin SJ, Amin S, Bradshaw A. Contrast, coagulation and fibrinolysis. Invest Radiol 1986;21:248–252.

    PubMed  CAS  Google Scholar 

  31. Gabriel DA, Jones MR, Reece NS, Boothroyd E, Bashore T. Platelet and fibrin modification by radiographic contrast media. Circ Res 1991;68:881–887.

    PubMed  CAS  Google Scholar 

  32. Greenbaum RA, Barradas MA, Mikhaildis DP, Jeremy JY, Evans TR, Dandona P. Effect of heparin and contrast medium on platelet function during routine cardiac catheterization. Cardiovasc Res 1987;21:878–885.

    PubMed  CAS  Google Scholar 

  33. Davidson CJ, Mark DB, Pieper KS, et al. Thrombotic and cardiovascular complications related to nonionic contrast media during cardiac catheterization: analysis of 8,517 patients. Am J Cardiol 1990;65:1481–1484.

    PubMed  CAS  Google Scholar 

  34. Markus H, Loh A, Israel D, Buckenham T, Clifton A, Brown MM. Microscopic air embolism during cerebral angiography and strategies for its avoidance. Lancet 1993;341:784–787.

    PubMed  CAS  Google Scholar 

  35. Goldstein JA, Kern M, Wilson R. A novel automated injection system for angiography. J Intervent Cardiol 2001;14:147–152.

    PubMed  CAS  Google Scholar 

  36. Ciabattoni G, Ujang S, Sritara P, et al. Aspirin, but not heparin, suppresses the transient increase in thromboxane biosynthesis associated with cardiac catheterization or coronary angioplasty. J Am Coll Cardiol 1993;21:1377–1381.

    PubMed  CAS  Google Scholar 

  37. Davis K, Kennedy JW, Kemp HG, Judkins MP, Gosselin AJ, Killip T. Complications of coronary arteriography from the collaborative study of coronary artery surgery (CASS). Circulation 1979;59:1105–1112.

    PubMed  CAS  Google Scholar 

  38. Eyer KM. Complications of transfemoral coronary arteriography and their prevention using heparin. Am Heart J 1973;86:428–435.

    PubMed  CAS  Google Scholar 

  39. Walker WJ, Mundall SJ, Broderick HG, Prasad B, Ravi JM. Systemic heparinization for femoral percutaneous coronary arteriography. N Engl J Med 1973;288:826–830.

    PubMed  CAS  Google Scholar 

  40. Greenbaum RA, Barradas MA, Mikhailidis DP, Jeremy JY, Evans TR, Dandona P. Effect of heparin and contrast medium on platelet function during routine cardiac catheterization. Cardiovasc Res 1987;21:878–885.

    PubMed  CAS  Google Scholar 

  41. Shanberge JN, Quattrociocchi-Longe TM, Martens MH. Interrelationship of protamine and platelet factor 4 in the neutralization of heparin. Thrombosis Res 1987;46:89–100.

    CAS  Google Scholar 

  42. Becker RC, Clyne C, Weiner BH, et al. Heparin pharmacokinetics and in vitro anticoagulant activity in patients receiving non-ionic contrast media. Cardiology 1991;79:31–38.

    PubMed  CAS  Google Scholar 

  43. Dehmer GJ, Haagen D, Malloy CR, Schmitz JM. Anticoagulation with heparin during cardiac catheterization and its reversal by protamine. Cathet Cardiovasc Diagn 1987;13:16–21.

    PubMed  CAS  Google Scholar 

  44. Shanberge JN, Murato M, Quattrociocchi-Longe T, Van Neste L. Heparin-protamine complexes in the production of heparin rebound and other complications of extracorporeal bypass procedures. Am J Clin Pathol 1987;87:210–217.

    PubMed  CAS  Google Scholar 

  45. Kesteven PJ, Ahmed A, Aps C, Williams BT, Savidge GF. Protamine sulphate and heparin rebound following open-heart surgery. J Cardiovasc Thor Surg 1986;27:600–603.

    CAS  Google Scholar 

  46. Weiss ME, Nyhan D, Peng Z, et al. Association of protamine IgE and IgE antibodies with life threatening reactions to intravenous protamine. N Engl J Med 1989:320:886–892.

    PubMed  CAS  Google Scholar 

  47. Harrow JC. Protamine: a review of its toxicity. Anesth Analg 1985;64:348–361.

    Google Scholar 

Nitroglycerin

  1. Feldman RL, Marx JD, Pepine CL, Conti CR. Analysis of coronary responses to various doses of intracoronary nitroglycerin. Circulation 1982;66:321–327.

    PubMed  CAS  Google Scholar 

  2. Feldman RL, Pepine CJ, Conti CR. Magnitude of dilatation of large and small coronary arteries by nitroglycerin. Circulation 1981;64:324–333.

    PubMed  CAS  Google Scholar 

  3. Macho P, Vatner SF. Effects of nitroglycerin and nitroprusside on large and small coronary vessels in conscious dogs. Circulation 1981;64:1101–1107.

    PubMed  CAS  Google Scholar 

  4. Mehta J, Pepine CJ. Effect of sublingual nitroglycerin on regional flow in patients with and without coronary disease. Circulation 1978;58:803–807.

    PubMed  CAS  Google Scholar 

Special Considerations in Coronary Angiography

  1. Gordon PR, Abrams C, Gash AK, Carabello BA. Pericatheterization risk factors in left main coronary artery stenosis. Am J Cardiol 1987;59:1080–1083.

    PubMed  CAS  Google Scholar 

  2. Conti CR, Selby JH, Christie LG, et al. Left main coronary artery stenosis: clinical spectrum, pathophysiology, and management. Progr Cardiovasc Dis 1979;22:73–105.

    CAS  Google Scholar 

  3. Davis K, Kennedy JW, Kemp HG, Judkins MP, Gosselin AJ, Killip T. Complications of coronary arteriography from the collaborative study of coronary artery surgery (CASS). Circulation 1979;59:1105–1112.

    PubMed  CAS  Google Scholar 

  4. Cohen MG, Kelly RV, Kong DF, et al. Pulmonary artery catheterization in acute coronary syndromes: insights from the GUSTO IIb and GUSTO III trials. Am J Med 2005;118:482–488.

    PubMed  Google Scholar 

  5. Kern MJ, Aguirre F, Bach R, Donohue T, Siegel R, Segal J. Augmentation of coronary blood flow by intra-aortic balloon pumping in patients after coronary angioplasty. Circulation 1993;87:500–511.

    PubMed  CAS  Google Scholar 

  6. Alderman EL, Wexler L. Angiographic implications of cardiac transplantation. Am J Cardiol 1989;64:16E–21E.

    PubMed  CAS  Google Scholar 

Outpatient Catheterization

  1. Block PC, Ockene I, Goldberg RJ, et al. A prospective randomized trial of outpatient versus inpatient cardiac catheterization. N Engl J. Med 1988;319:1251–1255.

    CAS  Google Scholar 

  2. Pink S, Fiutowski L, Gianelly RE. Outpatient cardiac catheterizations: analysis of patients requiring admission. Clin Cardiol 1989;12:375–378.

    PubMed  CAS  Google Scholar 

  3. Clements SD, Gatlin S. Outpatient cardiac catheterization: a report of 3,000 cases. Clin Cardiol 1991;14:477–480.

    PubMed  Google Scholar 

  4. Clark DA, Moscovich MD, Vetrovec GW, Wexler L. Guidelines for the performance of outpatient catheterization and angiographic procedures. Cathet Cardiovasc Diagn 1992;27:5–7.

    PubMed  CAS  Google Scholar 

  5. Oldroyd KG, Phadke KV, Phillips R, PHM Carson, Clarke M, David JAS. Cardiac catheterization by the Judkins technique as an outpatient procedure. Br Med J 1989;298:875–876.

    CAS  Google Scholar 

  6. Health and Public Policy Committee. The safety and efficacy of ambulatory cardiac catheterization in the hospital and freestanding setting. Ann Intern Med 1985;103:294–298.

    Google Scholar 

  7. Kahn KL. The efficacy of ambulatory cardiac catheterization in the hospital and free-standing setting. Am Heart J 1986;111:152.

    PubMed  CAS  Google Scholar 

Complications of Coronary Angiography

  1. Bourassa MG, Noble J. Complication rate of coronary arteriography: a review of 5250 cases studied by a percutaneous femoral technique. Circulation 1976;53:106–114.

    PubMed  CAS  Google Scholar 

  2. Kennedy JW, Registry Committee of the Society for Cardiac Angiography. Complications associated with cardiac catheterization and angiography. Cathet Cardiovasc Diagn 1982;8:5–11.

    PubMed  CAS  Google Scholar 

  3. Noto TJ, Johnson L, Krone R, et al. Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cathet Cardiovasc Diagn 1991;24:75–83.

    PubMed  Google Scholar 

  4. Gersh BJ, Phil D, Kronmal RA, et al. Participants in the coronary artery surgery study: coronary arteriography and coronary artery bypass surgery: morbidity and mortality in patients ages 65 years or older. Circulation 1983;67:483–491.

    PubMed  CAS  Google Scholar 

  5. Ernst SMPG, Tjonjoegin RM, Schrader R, et al. Immediate sealing of arterial puncture sites after cardiac catheterization and coronary angioplasty using a biodegradable collagen plug: results of an international registry. J Am Coll Cardiol 1993;21:851–855.

    PubMed  CAS  Google Scholar 

  6. McCann RL, Schwartz LB, Pieper KS. Vascular complications of cardiac catheterization. J Vasc Surg 1991;14:375–381.

    PubMed  CAS  Google Scholar 

  7. Muller DWM, Shamir KJ, Ellis SG, Topol EJ. Peripheral vascular complications after conventional and complex percutaneous coronary interventional procedures. Am J Cardiol 1992;69:63–68.

    PubMed  CAS  Google Scholar 

  8. Altin RS, Flicker S, Naidech HJ. Pseudoaneurysm and arteriovenous fistula after femoral artery catheterization: association with low femoral punctures. Am J Radiol 1989;152:629–631.

    CAS  Google Scholar 

  9. Khoury M, Batra S, Berg R, Rama K, Kozul V. Influence of arterial access sites and interventional procedures on vascular complications after cardiac catheterizations. Am J Surg 1992;164:205–209.

    PubMed  CAS  Google Scholar 

  10. McCready RA, Siderys H, Pittman JN, et al. Septic complications after cardiac catheterization and percutaneous transluminal coronary angioplasty. J Vasc Surg 1991;14:170–174.

    PubMed  CAS  Google Scholar 

  11. Kotval PS, Khoury A, Shah PM, Babu SC. Doppler sonographic demonstration of the progressive spontaneous thrombosis of pseudoaneurysms. J Ultrasound Med 1990;9:185–190.

    PubMed  CAS  Google Scholar 

  12. Agrawal SK, Pinheiro L, Roubin GS, et al. Nonsurgical closure of femoral pseudoaneurysms complicating cardiac catheterization and percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1992;20:610–615.

    PubMed  CAS  Google Scholar 

  13. Fellmeth BD, Baron SB, Brown PR, et al. Repair of postcatheterization femoral pseudoaneurysms by color flow ultrasound guided compression. Am Heart J 1992;123:547–551.

    PubMed  CAS  Google Scholar 

  14. Colt HG, Begg RJ, Saporito JJ, Cooper WM, Shapiro AP. Cholesterol emboli after cardiac catheterization. Medicine 1988;67:389–400.

    PubMed  CAS  Google Scholar 

  15. Oda H, Miida T, Sato H, Higuma N. Treatment of unstable angina with cholesterol embolization as a complication of left heart catheterization. Jpn Circ J 1990;54:487–492.

    PubMed  CAS  Google Scholar 

  16. Rosman HS, David TP, Reddy D, Goldstein S. Cholesterol embolization: clinical findings and implications. J Am Coll Cardiol 1990;15:1296–1299.

    PubMed  CAS  Google Scholar 

  17. Ong HT, Elmsly WG, Friedlander DH. Cholesterol atheroembolism: an increasingly frequent complication of cardiac catheterization. Med J Aust 1991;154:412–414.

    PubMed  CAS  Google Scholar 

  18. Kalter DC, Rudolph A, McGavran M. Livedo reticularis due to multiple cholesterol emboli. J Am Acad Dermatol 1985;13:235–242.

    PubMed  CAS  Google Scholar 

  19. Gaines PA, Kennedy A, Moorhead P, Cumberland DC, Welsh CL, Rutley MS. Cholesterol embolization: a lethal complication of vascular catheterization. Lancet 1988;1(8578):168–170.

    PubMed  CAS  Google Scholar 

  20. Ramirez G, O’Neill WM, Lambert R, Bloomer A. Cholesterol embolization: A complication of angiography. Arch Intern Med 1978;138:1430–1432.

    PubMed  CAS  Google Scholar 

  21. Rose M, Dinour D, Chisin R. Splenic infarction: a complication of cardiac catheterization. Clin Cardiol 1992;15:697–698.

    PubMed  CAS  Google Scholar 

  22. Eggebrecht H, Oldenburg O, Dirsch O, et al. Potential embolization by atherosclerotic debris dislodged from aortic wall during cardiac catheterization: histological and clinical findings in 7,621 patients. Cathet Cardiovasc Intervent 2000;49:389–394.

    CAS  Google Scholar 

  23. Keeley EC, Grines CL. Scraping of aortic debris by coronary guiding catheters: a prospective evaluation of 1,000 cases. J Am Coll Cardiol 1998;32:1861–1865.

    PubMed  CAS  Google Scholar 

  24. Katz ES, Tunick PA, Rusinek H, Ribakive G, Spencer FC, Kronzon I. Protruding aortic atheromas predict stroke in elderly patients undergoing cardiopulmonary bypass: experience with intraoperative transesophageal echocardiography. J Am Coll Cardiol 1992;20:70–77.

    PubMed  CAS  Google Scholar 

  25. Karalis DG, Chandrasekaran K, Victor MF, Ross JJ, Mintz GS. Recognition and embolic potential of intraaortic atherosclerotic debris. J Am Coll Cardiol 1991;17:73–78.

    PubMed  CAS  Google Scholar 

  26. O’Quin RJ, Lakshminarayan S. Venous air embolism. Arch Intern Med 1982;142:2173–2176.

    PubMed  CAS  Google Scholar 

  27. Gottdiener JS, Papademetriou V, Notargiacomo A, Park WY, Cutler J. Incidence and cardiac effects of systemic venous air embolism: echocardiographic evidence of arterial embolization via non-cardiac shunt. Arch Intern Med 1988;148:795–800.

    PubMed  CAS  Google Scholar 

  28. Marco AP, Furman WR. Venous air embolism, airway difficulties, and massive transfusion. Surg Clin North Am 1993;73:213–228.

    PubMed  CAS  Google Scholar 

  29. Calverley RK, Dodds WA, Trapp WG, Jenkins LC. Hyperbaric treatment of cerebral air embolism: a report of a case following cardiac catheterization. Can Anaesth Soc J 1971;18:665–674.

    PubMed  CAS  Google Scholar 

  30. Keilson GR, Schwartz WJ, Recht LD. The preponderance of posterior circulatory events is independent of the route of cardiac catheterization. Stroke 1992;23:1358–1359.

    PubMed  CAS  Google Scholar 

  31. Kosmorsky G, Hanson MR, Tomsak RL. Neuro-ophthalmologic complications of cardiac catheterization. Neurology 1988;38:483–485.

    PubMed  CAS  Google Scholar 

  32. Vik-Mo H, Todnem K, Folling M, Rosland GA. Transient visual disturbance during cardiac catheterization with angiography. Cathet Cardiovasc Diagn 1986;12:1–4.

    PubMed  CAS  Google Scholar 

  33. Dawson DM, Fischer EG. Neurologic complications of cardiac catheterization. Neurology 1977;27:496–497.

    PubMed  CAS  Google Scholar 

  34. Sticherling C, Berkefeld J, et al. Transient bilateral cortical blindness after coronary angiography. Lancet 1998;351:570.

    PubMed  CAS  Google Scholar 

  35. Deckelbaum LI, Isner JM, Konstam MA, Salem DN. Catheterinduced versus spontaneous spasm—do these coronary bedfellows deserve to be estranged? Am J Med 1985;79:1–4.

    PubMed  CAS  Google Scholar 

  36. Deligonul U, Kern MJ, Caralis D. Left main and right catheterinduced coronary artery spasm in a patient with vasospastic angina. Catheter Cardiovasc Diagn 1989;17:39–44.

    CAS  Google Scholar 

  37. Heijman J, Gamal ME, Michels R. Catheter induced spasm in aortocoronary vein grafts. Br Heart J 1983;49:30–32.

    PubMed  CAS  Google Scholar 

  38. Schwartz RE, Butman S. Catheter-induced nonproximal coronary artery spasm. Am J Cardiol 1984;53:352–354.

    Google Scholar 

  39. Freeman SP, Liston MJ, Lips DL, Vacek JL. Catheter-induced left internal mammary artery dissection: a report of two cases and review of the literature. [Case Reports]. J Intervent Cardiol 2004;17(2):117–121.

    PubMed  Google Scholar 

  40. Haas JM, Peterson CR, Jones RC. Subintimal dissection of the coronary arteries: a complication of selective coronary arteriography and the transfemoral percutaneous approach. Circulation 1968;38:678–683.

    PubMed  CAS  Google Scholar 

  41. Tortoledo F, Zacca NM, Chahine RA. Coronary artery spasm superimposed on coronary artery dissection. Am J Cardiol 1984;53:363–364.

    PubMed  CAS  Google Scholar 

  42. Wilson VE, Bates ER. Subacute bilateral coronary ostial stenoses following cardiac catheterization and PTCA. Cathet Cardiovasc Diagn 1991;23:114–116.

    PubMed  CAS  Google Scholar 

  43. Hammermeister KE, Warbasse JR. Immediate hemodynamic effects of cardiac angiography in man. Am J Cardiol 1973;31:307–314.

    PubMed  CAS  Google Scholar 

  44. Golman K, Almen T. Contrast media-induced nephrotoxicity: survey and present state. Invest Radiol 1985;20:S92–S96.

    PubMed  CAS  Google Scholar 

  45. D’elia JA, Gleason RE, Alday M, et al. Nephrotoxicity from angiographic contrast material. Am J Med 1982;72:719–723.

    CAS  Google Scholar 

  46. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. N Engl J Med 1989;320:143–149.

    PubMed  CAS  Google Scholar 

  47. Rich MW, Crecelius CA. Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age. Arch Intern Med 1990;150:1237–1242.

    PubMed  CAS  Google Scholar 

  48. Taliercio CP, Vlietstra RE, Fisher LD, Burnett JC. Risks for renal dysfunction with cardiac angiography. Ann Intern Med 1986;104:501–504.

    PubMed  CAS  Google Scholar 

  49. Talierco CP, Vliestra RE, Ilstrup DM. A randomized comparison of nephrotoxicity of iopamidol and diatrizoate in high risk patients undergoing coronary angiography. J Am Coll Cardiol 1991;17:384–390.

    Google Scholar 

  50. Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 2003;348:491–499.

    PubMed  CAS  Google Scholar 

  51. Kay J, Chow WH, Chan TM, et al. Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial. JAMA 2003;289:553–558.

    PubMed  CAS  Google Scholar 

  52. Ochoa A, Pellizzon G, Addala S, et al. Abbreviated dosing of N-acetylcysteine prevents contrast-induced nephropathy after elective and urgent coronary angiography and intervention. J Intervent Cardiol 2004;17:159–165.

    PubMed  Google Scholar 

  53. Merten GJ, Burgess WP, Gray LV, et al. Prevention of contrastinduced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 2004;19;291:2328–2334.

    Google Scholar 

  54. Anto HR, Chou SY, Porush JG, Shapiro WB. Infusion intravenous pyelography and renal function. Arch Intern Med 1981;141:1652–1656.

    PubMed  CAS  Google Scholar 

  55. Old CW, Duarte CM, Lehrner LH, Henry AR, Sinnott RC. A prospective evaluation of mannitol in the prevention of radiocontrast acute renal failure. Clin Res 1981;29:472A(abstr).

    Google Scholar 

  56. Beroniade VC. Prevention of acute renal failure secondary to radiocontrast agents. Abstracts of the 8th International Congress of Nephrology. Athens: University Studio Publishing, 1981:380.

    Google Scholar 

  57. Stone GW, McCullough PA, Tumlin JA, et al., CONTRAST Investigators. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 2003;290:2284–2291.

    PubMed  CAS  Google Scholar 

  58. Lasser EC, Berry CC, Talner LB, et al., Contrast Material Reaction Study participants. Pretreatment with corticosteroids to alleviate reactions to intravenous contrast material. N Engl J Med 1987;317:845–849.

    PubMed  CAS  Google Scholar 

  59. Steinberg EP, Moore Rd, Powe NR, et al. Safety and cost effectiveness of high osmolality as compared with low osmolality contrast material in patients undergoing cardiac angiography. N Engl J Med 1992;326:425–430.

    PubMed  CAS  Google Scholar 

  60. Greenberger PA, Patterson R, Tapio CM. Prophylaxis against repeated radiocontrast media reactions in 857 cases. Arch Intern Med 1985;145:2197–2200.

    PubMed  CAS  Google Scholar 

  61. Bell WR, Royall RM. Heparin-associated thrombocytopenia: A comparison of three heparin preparations. N Engl J Med 1980;303:902–907.

    PubMed  CAS  Google Scholar 

  62. Ansell J, Deykin D. Heparin-induced thrombocytopenia and recurrent thromboembolism. Am J Hemat 1980;8:325–332.

    PubMed  CAS  Google Scholar 

  63. Horrow JC. Protamine: a review of its toxicity. Anesth Analg 1985;64:348–361.

    PubMed  CAS  Google Scholar 

  64. Hobbhahn J, Conzen PF, Habazettl H, Gutman R, Kellermann W, Peter K. Heparin reversal by protamine in humans—complement, prostaglandins, blood cells, and hemodynamics. J Appl Physiol 1991;71:1415–1421.

    PubMed  CAS  Google Scholar 

  65. Pearson PJ, Evora PRB, Ayrancioglu K, Schaff HV. Protamine releases endothelium-derived relaxing factor from systemic arteries: a possible mechanism of hypotension during heparin neutralization. Circulation 1992;86:289–294.

    PubMed  CAS  Google Scholar 

  66. Friedman HS, Trivelli LA, Nguyen T, Benamor R, Dorsa M. Hematologic changes after cardiac catheterization. Cathet Cardiovasc Diagn 1988:89–91.

    Google Scholar 

  67. Gaglani RD, Turk AA, Mehra MR, Lach RD. Ventricular standstill complicating left heart catheterization in the presence of uncomplicated right bundle branch block. Cathet Cardiovasc Diagn 1992;26:212–214.

    Google Scholar 

  68. Munsif AN, Schechter E. Complete block below the His bundle induced by left-sided cardiac catheterization 1991;24:189–191.

    CAS  Google Scholar 

  69. Little WC, Reeves RC, Coughlan HC, Rogers EW. Effect of cough on coronary perfusion pressure: does coughing help clear the coronary arteries of angiographic contrast medium? Circulation 1982;65:604–610.

    PubMed  CAS  Google Scholar 

  70. Bergstra A, van Dijk RB, Brekke O, et al. Hemodynamic effects of iodixanol and iohexol during ventriculography in patients with compromised left ventricular function. Catheter Cardiovasc Intervent 2000;50:314–321.

    CAS  Google Scholar 

Coronary Anatomy and Dimensions

  1. Dryander. Anatomia Mundini. Marburg: 1541:30–34.

    Google Scholar 

  2. Saunders JB, O’Malley CD. The anatomical drawings of Andreas Vesalius. New York: Bonanza Books, 1982.

    Google Scholar 

  3. James TN. Anatomy of the Coronary Arteries. New York: Harper & Row, Hoeber Medical Division, 1961.

    Google Scholar 

  4. Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am Heart J 1989;117:418–434.

    PubMed  CAS  Google Scholar 

  5. Zamir M, Sinclair P. Roots and calibers of the human coronary arteries. Am J Anatomy 1988;183:226–234.

    CAS  Google Scholar 

  6. Baroldi G, Scomazzoni G. Coronary Circulation in the Normal and Pathologic Heart. Washington, DC: Department of the Army, United States Government Printing Office, 1967:5–90.

    Google Scholar 

  7. Virmani R, Chun PKC, Rainowitz M, Goldstein RE, McAllister HA. Lack of correlation to coronary artery dominance and bicuspid aortic valve: an autopsy study of 54 cases. Arch Pathol Lab Med 1984;108:638–641.

    PubMed  CAS  Google Scholar 

  8. Kronzon I, Deutsch P, Glassman E. Length of the left main coronary artery: Its relation to the pattern of coronary arterial distribution. Am J Cardiol 1974;34:787–789.

    PubMed  CAS  Google Scholar 

  9. Higgins CB, Wexler L. Reversal of dominance of the coronary arterial system in isolated aortic stenosis and bicuspid aortic valve. Circulation 1975;52:292–296.

    PubMed  CAS  Google Scholar 

  10. Murphy ES, Rosch J, Rahimtoola SH. Frequency and signficance of coronary arterial dominance in isolated aortic stenosis. Am J Cardiol 1977;39:505–509.

    PubMed  CAS  Google Scholar 

  11. Green GE, Bernstein S, Reppert EH. The length of the left main coronary artery. Surgery 1967;62:1021–1024.

    PubMed  CAS  Google Scholar 

  12. Lereer PK, Edwards WD. Coronary arterial anatomy in bicuspid aortic valve: necropsy study of 100 hearts. Br Heart J 1981;45:142–147.

    Google Scholar 

  13. Bergelson BA, Tommaso CL. Left main coronary artery disease: assessment, diagnosis, and therapy. Am Heart J 1995;129(2):350–359.

    PubMed  CAS  Google Scholar 

  14. Kolodziej AW, Lobo FV, Walley VM. Intra-atrial course of the right coronary artery and its branches. Can J Cardiol 1994;10(2):263–267.

    PubMed  CAS  Google Scholar 

  15. Adams J, Treasure T. Variable anatomy of the right coronary artery supply to the left ventricle. Thorax 1985;40:618–620.

    PubMed  CAS  Google Scholar 

  16. Gregg DE. Coronary Circulation in Health and Disease. Philadelphia: Lea Febiger, 1950.

    Google Scholar 

  17. Weaver ME, Pantely GA, Bristow JD, Ladley HD. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res 1986;20:907–917.

    PubMed  CAS  Google Scholar 

  18. Nerantzis C, Avgoustakis D. An s-shaped atrial artery supplying the sinus node area. Chest 1980;78:274–278.

    PubMed  CAS  Google Scholar 

  19. Ilia R, Goldfarb B, Katz A, Margulis G, Gussarsky Y, Gueron M. Variations in blood supply to the anterior interventricular septum: incidence and possible clinical importance. Cathet Cardiovasc Diagn 1991;24:277–282.

    PubMed  CAS  Google Scholar 

  20. Tomanek RJ. Microanatomy of the coronary circulation. In: Spaan JAE, Bruschke AVG, Gittenberger AC, De Groot DD, eds. Coronary Circulation: From Basic Mechanisms to Clinical Implications. Dordrecht: Martinus Nijhoff, 1987:3–12.

    Google Scholar 

  21. Schlesinger MJ. Relation of anastomotic pattern to pathologic conditions of the coronary arteries. Arch Pathol 1940;30:403–415.

    Google Scholar 

  22. Allwork SP. Angiographic anatomy. In: Anderson RH, Becker AE, eds. Cardiac Anatomy. London: Churchill Livingstone, 1980.

    Google Scholar 

  23. Allwork SP. The applied anatomy of the arterial blood supply to the heart in man. J Anat 1987;153:1–16.

    PubMed  CAS  Google Scholar 

  24. Feiring AJ, Johnson MR, Kioschos JM, Kirchner PT, Marcus ML, White CW. The importance of the determination of the myocardial area at risk in the evaluation of the outcome of acute myocardial infarction in patients. Circulation 1987;75:980–987.

    PubMed  CAS  Google Scholar 

  25. Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography). J Am Coll Cardiol 1999;33:1756–1824.

    PubMed  CAS  Google Scholar 

  26. Sos TA, Kligfield PD, Sniderman KW. A method for understanding three-dimensional coronary anatomy. JAMA 1980;243:252–254.

    PubMed  CAS  Google Scholar 

  27. Coleman C, Castaneda-Zuniga WR, Amplatz K. Three-dimensional teaching model for coronary angiography. Cardiovasc Intervent Radiol 1982;5:154–156.

    PubMed  CAS  Google Scholar 

  28. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary angiography: estimation of dimension, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977;55:329.

    PubMed  CAS  Google Scholar 

  29. Wilson RF, Marcus ML, White CW. Prediction of the physiology significance of coronary arterial lesions by quantitative coronary angiography in patients with limited coronary artery disease. Circulation 1987;75:723–732.

    PubMed  CAS  Google Scholar 

  30. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977;55:329–337.

    PubMed  CAS  Google Scholar 

  31. Paulin S. Terminology for radiographic projections in cardiac angiography. [Letter] Cathet Cardiovasc Diagn 1981;7:341.

    PubMed  CAS  Google Scholar 

  32. Raman SV, Morford R, Neff M, et al. Rotational X-ray coronary angiography. Catheter Cardiovasc Intervent 2004;63:201–207.

    Google Scholar 

  33. Arnett EN, Isner JM Redwood DR, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med 1979;91:350.

    PubMed  CAS  Google Scholar 

  34. Isner JM, Kishel J, Kent KM, et al. Inaccuracy of angiographic determination of left main coronary arterial narrowing. Circulation 1979;59:60:II.

    Google Scholar 

  35. Hutchins GM, Bulkley BH, Ridolfi RL, et al. Correlation of coronary arteriograms and left ventriculograms with postmortem studies. Circulation 1977;56:32.

    PubMed  CAS  Google Scholar 

  36. Grondin CM, Dyrda I, Pasternac A, et al. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation 1974;49:703.

    PubMed  CAS  Google Scholar 

  37. Marcus ML, Armstrong ML, Heistad DD, et al. A comparison of three methods of evaluation coronary obstructive lesions: Postmortem arteriography, pathological examination and measurement of regional myocardial perfusion during maximal vasodilation. Am J Cardiol 1982;49:1699–1706.

    PubMed  CAS  Google Scholar 

  38. Johnson MR. A normal coronary artery: What size is it? Circulation 1992;86:331–333.

    PubMed  CAS  Google Scholar 

  39. McPherson DD, Hiratzka LF, Lamberth WC, et al. Delineation of the extent of coronary atherosclerosis by high-frequency epicardial echocardiography. N Engl J Med 1987;316:304–309.

    PubMed  CAS  Google Scholar 

  40. Langille BI, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium dependent. Science 1986;231:405–407.

    PubMed  CAS  Google Scholar 

  41. Marcus ML, Skorton DJ, Johnson MR, Collins SM, Harrison DG, Kerber RE. Visual estimates of percent diameter coronary stenosis: “A battered gold standard.” J Am Coll Cardiol 1988;11:882–885.

    PubMed  CAS  Google Scholar 

  42. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371–1375.

    PubMed  CAS  Google Scholar 

  43. Dodge JT, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal human coronary arteries: influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 1992;86:232–246.

    PubMed  Google Scholar 

  44. Vieweg WVR, Alpert JS, Hagan AD. Caliber and distribution of normal coronary arterial anatomy. Cathet Cardiovasc Diagn 1976;2:269–280.

    PubMed  CAS  Google Scholar 

  45. MacAlpin RN, Abbasi AS, Grollman JH, Eber L. Human coronary artery size during life. Radiology 1973;108:567–576.

    PubMed  CAS  Google Scholar 

  46. Dick C, Wyche K, Homans DC, White CW. Effect of distending pressure on intravascular ultrasound measurement of lumen dimensions. Circulation 1990;82 (abstr III):459.

    Google Scholar 

  47. Markis JE, Joffe CD, Cohn PF, Feen DJ, Herman MV, Gorlin R. Clinical significance of coronary artery ectasia. Am J Cardiol 1976;37:217–222.

    PubMed  CAS  Google Scholar 

  48. Swaye PS, Fisher LD, Litwin P, et al. Aneurysmal coronary artery disease. Circulation 1983;67:134–138.

    PubMed  CAS  Google Scholar 

  49. Hartnell GG, Parnell BM, Pridie RB. Coronary artery ectasia: Its prevalence and clinical significance in 4,993 patients. Br Heart J 1985;54:392–395.

    PubMed  CAS  Google Scholar 

  50. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984;310:819–824.

    PubMed  CAS  Google Scholar 

  51. O’Keefe JH, Owen RM, Bove AA. Influence of left ventricular mass on coronary artery cross-sectional area. Am J Cardiol 1987;59:1395–1397.

    PubMed  Google Scholar 

  52. Lewis BS, Gotsman MS. Relation between coronary artery size and left ventricular wall mass. Br Heart J 1973;35:1150–1153.

    PubMed  CAS  Google Scholar 

  53. Paulsen S, Vetner M, Hagerup SM. Relationship between heart weight and the cross-sectional area of the coronary ostia. Acta Pathol Microbiol Scand 1975;83:529–532.

    Google Scholar 

  54. Haskell WL, Sims C, Myll J, Bortz WM, St. Goar FG, Alderman EL. Coronary artery size and dilating capacity in ultradistance runners. Circulation 1993;87:1076–1082.

    PubMed  CAS  Google Scholar 

  55. Kalin JK, Rutherford BD, McConabay DR, et al. Comparison of procedural results and risks of coronary angioplasty in men and women for conditions other than acute myocardial infarction. Am J Card 1992;69:1241–1242.

    Google Scholar 

  56. Fisher LD, Kennedy JW, Davis KB, et al. Association of sex, physical size and operative mortality after coronary artery bypass in the Coronary Artery Surgery Study (CASS). J Thorac Cardiovasc Surg 1982;84:334–341.

    PubMed  CAS  Google Scholar 

  57. O’Connor NJ, Morton JR, Birkmeyer JD, Olmstead EM, O’Connor GT. Effect of coronary artery diameter in patients undergoing coronary bypass surgery. Northern New England Cardiovascular Disease Study Group. Circulation 1996;93(4):652–655.

    PubMed  CAS  Google Scholar 

  58. Kornowski R, Lansky AJ, Mintz GS, et al. Comparison of men versus women in cross-sectional area luminal narrowing, quantity of plaque, presence of calcium in plaque, and lumen location in coronary arteries by intravascular ultrasound in patients with stable angina pectoris. Am J Cardiol 1997;79(12):1601–1605.

    PubMed  CAS  Google Scholar 

  59. Neufeld HN, Wagenvoort CA, Edwards JE. Coronary arteries in fetuses, infants, juveniles and young adults. Clin Invest 1962;11:837–844.

    CAS  Google Scholar 

  60. Leung WH, Stadius ML, Alderman EL. Determinants of normal coronary artery dimensions in humans. Circulation 1991;84:2294–2306.

    PubMed  CAS  Google Scholar 

  61. Jost S, Rafflenbeul W, Reil G, et al. Reproducible uniform coronary vasomotor tone with nitrocompounds: prerequisite of quantitative coronary angiographic trials. Cathet Cardiovasc Diagn 1990;20:168–173.

    PubMed  CAS  Google Scholar 

  62. Yasue H, Omati S, Takizawa A, Nagao M, Miwa K, Tanaka S. Circadian variation in exercise capacity in patients with Prinzmetal’s variant angina: role of exercise induced coronary arterial spasm. Circulation 1979;59:938–948.

    PubMed  CAS  Google Scholar 

  63. Williams JK, Vita JA, Manuck SB, Selwyn AP, Kaplan JR. Psychosocial factors impair responses of coronary arteries. Circulation 1991;84:2146–2153.

    PubMed  CAS  Google Scholar 

  64. Williams JK, Adams MR, Klopfenstein HS. Estrogen modulates responses of atherosclerotic coronary arteries. Circulation 1990;81:1680–1687.

    PubMed  CAS  Google Scholar 

  65. Brown BG, Petersen RB, Pierce CD, Bolson EL, Dodge HT. Dynamics of human coronary stenosis: interaction among stenosis flow, distending pressure and vasomotor tone. In: Santamore WP, Bove AA, eds. Coronary Artery Disease. Baltimore-Munich: Urban & Schwarzenberg, Cardiac Imaging, 1982:199.

    Google Scholar 

  66. Lee JT, Ideker RE, Reimer KA. Myocardial infarct size and location in relation to the coronary vascular bed at risk in man. Circulation 1981;64:526.

    PubMed  CAS  Google Scholar 

  67. Koyanagi S, Eastham CL, Harrison DG, Marcus ML. Transmural variation in the relationship between myocardial infarct size and risk area. Am J Physiol 1982;242 (Heart Circ Physiol II):H867.

    PubMed  CAS  Google Scholar 

  68. Liu YH, Bahn RC, Ritman EL. Myocardial volume perfused by coronary artery branches: a three-dimensional X-ray computed tomographic evaluation in pigs. Invest Radiol 1992;27:302–307.

    PubMed  CAS  Google Scholar 

  69. Koiwa Y, Bahn RC, Ritman EL. Regional myocardial volume perfused by the coronary branch; estimation in vivo. Circulation 1986;74:157–163.

    PubMed  CAS  Google Scholar 

  70. Feiring AJ, Bruch PM, Husayni TS, Kirchner PT, Marcus M. Premortem assessment of myocardial risk area employing intracoronary technetium macroaggregated albumin and gated nuclear imaging. Circulation 1986;73:551.

    PubMed  CAS  Google Scholar 

  71. Gibbons RJ, Verani MS, Behrenbeck T, et al. Feasibility of tomographic 99mTc-hexakis-2-methoxy-2-methylprophylisonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation 1989;80:1277–1286.

    PubMed  CAS  Google Scholar 

  72. Huber KC, Bresnahan JF, Bresnahan DR, Pellikka PA, Behrenbeck T, Gibbons RJ. Measurement of myocardium at risk by technetium-99m Sestamibi: correlation with coronary angiography. J Am Coll Cardiol 1992;19:67–73.

    PubMed  CAS  Google Scholar 

  73. Freiman PC, Cooper SM, Harrison DC. Relationship between angiographic lesion location and left ventricular anatomic risk area. Clin Res 1987;35:831A(abstr).

    Google Scholar 

Coronary Anomalies

  1. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn 1990;21:26–40.

    Google Scholar 

  2. Kimbris D, Iskandrian AS, Segal BL, Bemis CE. Anomalous aortic origin of coronary arteries. Circulation 1978;58:606–615.

    Google Scholar 

  3. Wilkins CE, Betancourt B, Mathur VS, et al. Coronary artery anomalies: a review of more than 10,000 patients from the Clayton Cardiovascular Laboratories. Texas Heart Inst J 1988;15:166–173.

    CAS  Google Scholar 

  4. Engel HJ, Tomes C, Page HL. Major variations in anatomical origin of the coronary arteries: angiographic observations in 4,250 patients without associated congenital heart disease. Cathet Cardiovasc Diagn 1975;1:157–169.

    PubMed  CAS  Google Scholar 

  5. Baltaxe HA, Wixson D. The incidence of congenital anomalies of the coronary arteries in the adult population. Radiology 1977;122:47–52.

    PubMed  CAS  Google Scholar 

  6. Becker AE. Congenital coronary arterial anomalies of clinical relevance. Coron Artery Dis 1995;6(3):187–193.

    PubMed  CAS  Google Scholar 

  7. Reyman HC. Dissertatio de vasis cordis propriis. Haller: Bibioth Anat 1737;2:366.

    Google Scholar 

  8. Angelini P, Trivellato M, Donis J, Leachman RD. Myocardial bridges: a review. Prog Cardiovasc Dis 1983;26:75–88.

    PubMed  CAS  Google Scholar 

  9. Polacek P, Zechmeister A. The occurrence and significance of myocardial bridges and loops on coronary arteries Opuscola Cardiologica. Acta Facultatis Medicae Univesitatis Brunensis Brno, 1968.

    Google Scholar 

  10. Morales A, Romanelli R, Boucek R. The mural left anterior descending coronary artery, strenuous exercise and sudden death. Circulation 1980;62(2):230–237.

    PubMed  CAS  Google Scholar 

  11. Channer KS, Bukis E, Hartnell G, Rees JR. Myocardial bridging of the coronary arteries. Clin Radiol 1989;40:355–359.

    PubMed  CAS  Google Scholar 

  12. Irvin RG. The angiographic prevalence of mycoardial bridging in man. Chest 1982:81:198–202.

    PubMed  CAS  Google Scholar 

  13. Hashimoto A, Takekoshi N, Murakami E. Clinical significance of myocardial bridging of the coronary artery. Jpn Heart J 1984;25:913–922.

    PubMed  CAS  Google Scholar 

  14. Katz SA, Feigl EO. Systole has little effect on diastolic coronary artery blood flow. Circ Res 1988;62:443–451.

    PubMed  CAS  Google Scholar 

  15. Algeria JR, Herrmann J, Holmes DR Jr, Lerman A, Rihal CS. Myocardial bridging. Eur Heart J 2005;March 11 (E pub).

    Google Scholar 

  16. Jain SP, White CJ, Ventura HO. De novo appearance of a myocardial bridge in heart transplant: assessment by intravascular ultrasonography, Doppler, and angiography. Am Heart J 1993;126:453–456.

    PubMed  CAS  Google Scholar 

  17. Ge J, Erbel R, Rupprecht H-S, et al. Comparison of intravascular ultrasound and angiography in the assessment of myocardial bridging. Circulation 1994;89:1725–1732.

    PubMed  CAS  Google Scholar 

  18. Noble J, Bourassa MG, Petitclere R, Dyrda I. Myocardial bridging and the milking effect of the left anterior descending coronary artery: normal variant or obstruction. Am J Cardiol 1976;37:993–999.

    PubMed  CAS  Google Scholar 

  19. Ferreira AG, Trotter SE, König B, Décourt LV, Fox K, Olsen ED. Myocardial bridges: morphological and functional aspects. Br Heart J 1991;6:364–367.

    Google Scholar 

  20. Corrado D, Thiene G, Cocco P, Frescura C. Nonatherosclerotic coronary artery disease and sudden death in the young. Br Heart J 1992;68:601–607.

    PubMed  CAS  Google Scholar 

  21. Lee SS, Wu TL. The role of mural coronary artery in prevention of coronary atherosclerosis. Arch Pathol 1972;93:32.

    PubMed  CAS  Google Scholar 

  22. Stolte M, Weis P, Prestele H. Muscle bridges over the left anterior descending coronary artery: their influence on arterial disease. Virchows Arch Pathol Anat 1977;375(1):23.

    PubMed  CAS  Google Scholar 

  23. Ishii T, Asuwa N, Masuda S, Ishikawa Y. The effects of a myocardial bridge on coronary atherosclerosis and ischaemia. J Pathol 1998;185(1):4–9.

    PubMed  CAS  Google Scholar 

  24. Ishii T, Hosoda Y. The significance of myocardial bridge upon atherosclerosis in the left anterior descending coronary artery. J Pathol 1986;148:279–291.

    PubMed  CAS  Google Scholar 

  25. Edwards JC, Burnsides CH, Swarm RL, et al. Arteriosclerosis in the intramural and extramural portions of coronary arteries in the human heart. Circulation 1956;13:235.

    PubMed  Google Scholar 

  26. van Brussel BL, van Tellingen C, Ernst SMPG, Plokker HWM. Myocardial bridging: a cause of myocardial infarction? Int J Cardiol 1984;6:78–82.

    PubMed  Google Scholar 

  27. Feldman AM, Baugham KL. Myocardial infarction associated with a myocardial bridge. Am Heart J 1986;111:784–787.

    PubMed  CAS  Google Scholar 

  28. Wymore P, Yedlicka JW, Garcia-Medina V, et al. The incidence of myocardial bridges in heart transplants. Cardiovasc Intervent Radiol 1989;12:202–206.

    PubMed  CAS  Google Scholar 

  29. Ischimori T, Raizner AE, Chahine RA, Awdeh M, Luchi RJ. Myocardial bridges in man: clinical correlations and angiographic accentuation with nitroglycerin. Cathet Cardiovasc Diagn 1977;3:59–65.

    Google Scholar 

  30. Kramer JR, Kitazume H, Krauthamer D, Raju NVR, Loop FO, Proudfit WL. The prevalence of myocardial bridging and septal squeeze in patients with significant aortic stenosis. Cleve Clin Q 1984;51:35–38.

    PubMed  CAS  Google Scholar 

  31. Page HL Jr, Engel JH, Campbell WB, Thomas SC. Anomalous origin of the left circumflex coronary artery. Recognition, angiographic demonstration and clinical significance. Circulation 1974;50:768.

    PubMed  Google Scholar 

  32. Chaitman BR, Lesperance J, Saltiel J, Bourassa MG. Clinical, angiographic, and hemodynamic findings in patients with anomalous origin of the coronary arteries. Circulation 1975;53:122.

    Google Scholar 

  33. Page HL Jr, Engel HJ, Campbell WB, Thomas CS Jr. Anomalous origin of the left circumflex coronary artery: recognition, angiographic demonstration and clinical significance. Circulation 1974;50:768–773.

    PubMed  Google Scholar 

  34. Topaz O, DiSciascio G, Goudreau E, et al. Coronary angioplasty of anomalous coronary arteries: notes on technical aspects. Cathet Cardiovasc Diagn 1990;21:106–111.

    PubMed  CAS  Google Scholar 

  35. Dicicco BS, McManus BM, Waller BF, Roberts WC. Separate aortic ostium of the left anterior descending and left circumflex coronary arteries from the left aortic sinus of Valsalva (absent left main coronary artery). Am Heart J 1982;104:53.

    Google Scholar 

  36. Liberthson RR, Dinsmore RE, Bharati S, et al. Aberrant coronary artery origin from the aorta: diagnosis and clinical significance. Circulation 1974;50:774–779.

    Google Scholar 

  37. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J 1986;111:941–963.

    PubMed  CAS  Google Scholar 

  38. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J 1986;111:941–963.

    PubMed  CAS  Google Scholar 

  39. Barth CW III, Roberts WC. Left main coronary artery originating from the right sinus of Valsalva and coursing between the aorta and pulmonary trunk. J Am Coll Cardiol 1986;7:366–373.

    PubMed  Google Scholar 

  40. Donaldson RM, Raphael M, Rodley-Smith R, et al. Angiographic identification of primary coronary anomalies causing impaired myocardial perfusion. Cathet Cardiovasc Diagn 1983;9:237–249.

    PubMed  CAS  Google Scholar 

  41. Brandt B III, Martins JB, Marcus ML. Anomalous origin of the right coronary artery from the left sinus of Valsalva. N Engl J Med 1983;10:596.

    Google Scholar 

  42. Serota H, Barth CW, Seuc CA, Vandormael M, Aguirre F, Kern MJ. Rapid identification of the course of anomalous coronary arteries in adults: the “dot and eye” method. Am J Cardiol 1990;65:891–898.

    PubMed  CAS  Google Scholar 

  43. Datta J, White CS, Gilkeson RC, et al. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology 2005;235(3):812–818.

    PubMed  Google Scholar 

  44. Hobbs RE, Millit HD, Raghavan PV, Moodie DS, Sheldon WC. Congenital coronary anomalies: clinical and therapeutic implications. In: Vidt D, ed. Cardiovascular Therapy. Philadelphia: FA Davis, 1982:43.

    Google Scholar 

  45. Kaku B, Shimizu M, Yoshio H, et al. Clinical features of prognosis of Japanese patients with anomalous origin of the coronary artery. Jpn Circ J 1996 60(10):7331–7341.

    Google Scholar 

  46. Bland EF, White PD, Garland J. Congenital anomalies of the coronary arteries: Report of an unusual case associated with cardiac hypertrophy. Am Heart J 1933;8:787–801.

    Google Scholar 

  47. Greenberg MA, Fish BG, Spindola-Franco H. Congenital anomalies of the coronary arteries. Radiol Clin North Am 1989;27:1127–1146.

    PubMed  CAS  Google Scholar 

  48. Wesselhoeft H, Fawcett JS, Johnson AL. Anomalous origin of the left coronary artery from the pulmonary trunk: its clinical spectrum, pathology, pathophysiology, based on a review of 140 cases with seven further cases. Circulation 1968;38:403–425.

    PubMed  CAS  Google Scholar 

  49. Guikahue M, Sidi D, Kachaner J, et al. Anomalous left coronary artery arising from the pulmonary artery in infancy: Is early operation better? Br Heart J 1988;60:522–526.

    Google Scholar 

  50. Musiani A, Cernigliaro C, Sansa M, Maselli D, De Gasperis C. Left main coronary artery atresia: literature review and therapeutical considerations. Eur J Cardiothorac Surg 1997;11(3):505–514.

    PubMed  CAS  Google Scholar 

  51. White CW, Chandra MS. Total occlusion of the main left coronary artery: a lethal lesion? Angiology 1976;27:587.

    PubMed  CAS  Google Scholar 

  52. Vogt PR, Tkebuchava T, Arbenz U, von Segesser LK, Turina MI. Anomalous origin of the right coronary artery from the pulmonary artery. Thorac Cardiovasc Surg 1994;42(2)125–127.

    PubMed  CAS  Google Scholar 

  53. Gillebert C, Van Hoof R, Van de Werf F, Piessens J, De Geest H. Coronary artery fistulas in an adult population. Eur Heart J 1986;7:437–443.

    PubMed  CAS  Google Scholar 

  54. Levin DC, Fellow KE, Abrams HL. Hemodynamically significant primary anomalies of the coronary arteries. Circulation 1978;58:25.

    PubMed  CAS  Google Scholar 

  55. Rittenhouse EA, Doty DB, Ehrenhaft JL. Congenital coronary artery-cardiac chamber fistula. Review of operative management. Ann Thorac Surg 1975;20:468–485.

    PubMed  CAS  Google Scholar 

  56. Said SA, el Gamal MI, van der Werf T. Coronary arteriovenous fistulas: collective review and management of six new cases—changing etiology, presentation, and treatment strategy. Clin Cardiol 1997;20(9):748–752.

    PubMed  CAS  Google Scholar 

  57. Jaffe RB, Glancy DL, Epstein SE, Brown BG, Morrow AG. Coronary arterial-right heart fistulae: long-term observations in seven patients. Circulation 1973;48:133–143.

    Google Scholar 

  58. Karagoz HY, Zorlutuna YI, Babacan KM, et al. Congenital coronary artery fistulas diagnostic and surgical considerations. Jpn Heart J 1989;30:685–694.

    PubMed  CAS  Google Scholar 

  59. Rittenhouse EA, Doty DB, Ehrenhaft JL. Congenital coronary artery-cardiac chamber fistula. Review of operative management. Ann Thorac Surg 1975;20:468.

    PubMed  CAS  Google Scholar 

  60. Chia BL, Chan ALK Tan LKA, Ng RAL. Coronary artery-left ventricular fistula. Cardiology 1981;68:167–179.

    PubMed  CAS  Google Scholar 

  61. Martens J, Haseldoncks C, van de Werf F, de Geest H. Silent left and right coronary artery-left ventricular fistulas: an unusual prominent thebesian system. Acta Cardiol 1983;38:139–142.

    PubMed  CAS  Google Scholar 

  62. Coussement P, De Geest H. Multiple coronary artery-left ventricular communications: an unusual prominent Thebesian system. A report of four cases and review of the literature. Acta Cardiol 1994;49(2):165–173.

    PubMed  CAS  Google Scholar 

  63. Ahmed SS, Haider B, Regen TJ. Silent left coronary artery-cameral fistula: probable cause of myocardial ischemia. Am Heart J 1982;102:869–870.

    Google Scholar 

  64. Cheng TO. Left coronary artery to left ventricular fistula: demonstration of coronary steal phenomenon. Am Heart J 1982;102:870–871.

    Google Scholar 

  65. Henzlova MJ, Nath H, Bucy RP, Bourge RC, Kirklin JK, Rogers WJ. Coronary artery to right ventricle fistula in heart transplant recipients: a complication of endomyocardial biopsy. J Am Coll Cardiol 1989;14:258–261.

    PubMed  CAS  Google Scholar 

Coronary Atherosclerosis

  1. Clarkson TB, Prichard RW, Morgan TM, Petrick GS, Klein KP. Remodeling of coronary arteries in human and non-human primates. JAMA 1994;26;271(4):289–294.

    PubMed  CAS  Google Scholar 

  2. Mohiaddin RH, Burman ED, Prasad SK, et al. Glagov remodeling of the atherosclerotic aorta demonstrated by cardiovascular magnetic resonance: the CORDA asymptomatic subject plaque assessment research (CASPAR) project. J Cardiovasc Magn Reson 2004;6:517–526.

    PubMed  CAS  Google Scholar 

  3. Rumberger JA, Sheedy PF II, Breen JF, Schwartz RS. Coronary calcium, as determined by electron beam computed tomography, and coronary disease on arteriogram: effect of patient’s sex on diagnosis. Circulation 1995;91:1363–1367.

    PubMed  CAS  Google Scholar 

  4. Janowitz WR, Agatston AS, Kaplan G, Viamonte M Jr. Differences in prevalence and extent of coronary artery calcium detected by ultrafast computed tomography in asymptomatic men and women. Am J Cardiol 1994;72:247–254.

    Google Scholar 

  5. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlative study. Circulation 1995;92:2157–2162.

    PubMed  CAS  Google Scholar 

  6. Mintz GS, Pichard AD, Popma JJ, et al. Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol 1997;29(2):268–274.

    PubMed  CAS  Google Scholar 

  7. Schmermund A, Baumgart D, Gorge G, et al. Measuring the effect of risk factors on coronary atherosclerosis: coronary calcium score versus angiographic disease severity. J Am Coll Cardiol 1998;31(6):1267–1273.

    PubMed  CAS  Google Scholar 

  8. Vlodaver Z, Kahn HA, Neufeld HN. The coronary arteries in early life in three different ethnic groups. Circulation 1969;39:541–550.

    PubMed  CAS  Google Scholar 

  9. Davies MJ. Coronary artery remO’Delling and the assessment of stenosis by pathologists. Histopathology 1998;33:497–500.

    PubMed  CAS  Google Scholar 

  10. Mann JM, Davies M. Assessment of the severity of coronary artery disease at postmortem examination. Are the measurements clinically valid? Br Heart J 1995;74(5):528–530.

    PubMed  CAS  Google Scholar 

  11. Waller BF, Pinkerton CA, Slack JD. Intravascular ultrasound: a histological study of vessels during life. Circulation 1992;85:2305–2310.

    PubMed  CAS  Google Scholar 

  12. Mintz G, Painter J, Pichard A, et al. Atherosclerosis in angiographically ‘normal’ coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cordiol 1995;25:1479–1485.

    CAS  Google Scholar 

  13. St. Goar FG, Pinto FJ, Alderman EL, et al. Detection of coronary atherosclerosis in young adult hearts using intravascular ultrasound. Circulation 1992;86:756–763.

    PubMed  CAS  Google Scholar 

  14. St. Goar FG, Pinto FJ, Alderman EL, et al. Intracoronary ultrasound in cardiac transplant recipients. Circulation 1992;85:979–987.

    PubMed  CAS  Google Scholar 

  15. Johnson TH, McDonald K, Nakhleh R, et al. Allograft vasculopathy and death in a cardiac transplant patient with angiographically normal coronary arteries. Cathet Cardiovasc Diagn 1991;24:37–40.

    PubMed  CAS  Google Scholar 

  16. Herzog CA, Ma JZ, Collins AJ. Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N Engl J Med 1998;339(12):799–805.

    PubMed  CAS  Google Scholar 

  17. Vavuranakis M, Stefanadis C, Toutouzas K, Pitsavos C, Spanos V, Toutouzas P. Impaired compensatory coronary artery enlargement in atherosclerosis contributes to the development of coronary artery stenosis in diabetic patients. An in vivo intravascular ultrasound study. Eur Heart J 1997;18(7):1090–1094.

    PubMed  CAS  Google Scholar 

  18. Schaper W, Buschmann I. Collateral circulation and diabetes. Circulation 1999;99:2224–2226.

    PubMed  CAS  Google Scholar 

  19. Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res 1985;47:341.

    Google Scholar 

  20. Marcus ML, Harrison DG, White CW, McPherson DD, Wilson RF, Kerber RE. Assessing the physiologic significance of coronary obstructions in patients: importance of diffuse undetected atherosclerosis. Prog Cardiovasc Dis 1988;31:39.

    PubMed  CAS  Google Scholar 

  21. White CW. Physiologic assessment of coronary artery stenosis severity. Trends Cardiovasc Med 1991;1:70–75.

    Google Scholar 

  22. Gould KL. Percent coronary stenosis: Battered gold standard, pernicious relic or clinical practicality? J Am Coll Cardiol 1988;11:8868.

    Google Scholar 

  23. Raphael MJ, Donaldson RM. A “significant” stenosis: Thirty years on. Lancet 1989;1:207

    PubMed  CAS  Google Scholar 

  24. Beauman GJ, Vogel RA. Accuracy of individual and panel visual interpretations of coronary arteriograms: implications for clinical decisions. J Am Coll Cardiol 1990;16:108–113.

    PubMed  CAS  Google Scholar 

  25. Detre KM, Wright E, Murphy ML, Takaro T. Observer agreement in evaluating coronary angiograms. Circulation 1975;52:979–986.

    PubMed  CAS  Google Scholar 

  26. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Hawthorne JW. Interobserver variability in coronary arteriography. Circulation 1976;53:627–632.

    PubMed  CAS  Google Scholar 

  27. DeRouen TA, Murphy JA, Owen W. Variability in the analysis of coronary arteriograms. Circulation 1977;55:324–328.

    PubMed  CAS  Google Scholar 

  28. Fisher LD, Judkins MP, Lesperance J, et al. Reproducibility of coronary arteriographic reading in the coronary artery surgery study (CASS). Cathet Cardiovasc Diagn 1982;8:565–575.

    PubMed  CAS  Google Scholar 

  29. Serruys PW, Reiber JHC, Wijns W, Brand M, Kooijman CJ, ten Katen HJ, Hugenholtz PG. Assessment of percutaneous transluminal angioplasty by quantitative angiography: diameter versus densitometric area measurements. Am J Cardiol 1984;54:482–488.

    PubMed  CAS  Google Scholar 

  30. Meier B, Gruentzig AR, Goebel N, Pyle R, von Gosslar W, Schlumpf F. Assessment of stenoses in coronary angioplasty: inter-and intraobserver variability. Int J Cardiol 1983;3:159–169.

    PubMed  CAS  Google Scholar 

  31. Scoblionko DP, Brown BG, Mitten S, et al. A new digital electronic caliper for measurement of coronary artery stenosis: comparison with visual estimates and computer-assisted measurements. Am J Cardiol 1984;53:689–693.

    PubMed  CAS  Google Scholar 

  32. Eusterman JH, Achor RWP, Kincaid OW, Brown AL Jr. Atherosclerotic disease of the coronary arteries. A pathologic-radiologic correlative study. Circulation 1962;26:1288.

    Google Scholar 

  33. Marcus ML, Harrison DG, White CW. McPherson DD, Wilson RF, Kerber RE. Assessing the physiologic significance of coronary obstructions in patients: importance of diffuse undetected atherosclerosis. Prog Cardiovasc Dis 1988;31:39–56.

    PubMed  CAS  Google Scholar 

  34. Sanmarco ME, Brooks SH, Blankenhorn DH. Reproducibility of a consensus panel in the interpretation of coronary angiograms. Am Heart J 1978;96:430–437.

    PubMed  CAS  Google Scholar 

  35. Galbraith JE, Murphy ML, de Soyza N. Coronary angiogram interpretation. JAMA 1978;240:2053–2056.

    PubMed  CAS  Google Scholar 

  36. Hermiller JB, Cusma JT, Spero LA, Fortin DF, Hardin MB, Bashore TM. Quantitative and qualitative coronary angiographic analysis: Review of methods, utility and limitations. Cathet Cardiovasc Diagn 1992;25:110–131.

    PubMed  CAS  Google Scholar 

  37. Mancini JGB. Quantitative coronary arteriography: Development of methods, limitations and clinical applications. Am J Cardiac Imag 1988;2:98–109.

    Google Scholar 

  38. Brown BG, Bolston EL, Dodge HT. Quantitative computer techniques for analyzing coronary arteriograms. Prog Cardiovasc Dis 1986;18:403–418.

    Google Scholar 

  39. Reiber JHC. Morphologic and densitometric quantitation of coronary stenoses: an overview of existing quantitation techniques. In: Reiber JHC, Serruys PW, eds. New Developments in Quantitative Coronary Arteriography. Dordrecht: Martinus Nijhoff, 1988:34.

    Google Scholar 

  40. Gensini GG, Kelly AE, DaCosta BCB, Huntington PP. Quantitative angiography: The measurement of coronary vasomobility in the intact animal and man. Chest 1979;60:522–530.

    Google Scholar 

  41. Kalbfleisch SJ, McGillem MJ, Pinto IMF, Kavanaugh KM, De-Boe SF, Mancini GBJ. Comparison of automated quantitative coronary angiography with caliper measurements of percent diameter stenosis. Am J Cardiol 1990;65:1181–1184.

    PubMed  CAS  Google Scholar 

  42. Scoblionko DP, Brown BG, Mitten S, et al. A new digital electronic caliper for measurement of coronary arterial stenosis: comparison with visual estimates and computer-assisted measurements. Am J Cardiol 1984;53:689–693.

    PubMed  CAS  Google Scholar 

  43. Reiber JHC, Kooijman CJ, Slager CG, et al. Coronary artery dimension from cineangiograms: methodology and validation of a computer assisted analysis procedure. IEEE Trans Med Imaging 1984;MI-3:131–141.

    Google Scholar 

  44. Reiber JHC, Serruys PW, Kooijman CJ, Slager CJ, Schuurbiers JHC, den Boer A. Approaches to standardization in acquisition and quantitation of arterial dimensions from cineangiograms. In: Reiber JHL, Serruys PW, eds. State of the Art in Quantitative Coronary Arteriography. Boston: Martinus Nijhoff, 1986:145.

    Google Scholar 

  45. Reiber JHC. Morphologic and densito-metric analysis of coronary arteries. In: Heintzen PH, Bursch JH, eds. Progress in Digital Angiocardiography. London: Kluwer Academic Publishers, 1988:137.

    Google Scholar 

  46. Reiber JHC, Serruys PW, Kooijman CJ, et al. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 1985;71:280–288.

    PubMed  CAS  Google Scholar 

  47. Langer A, Wilson RF. Comparison of manual versus automated edge detection for determining degrees of luminal narrowing by quantitative coronary angiography. Am J Cardiol 1991;67:885–889.

    PubMed  CAS  Google Scholar 

  48. Mancini GBJ, Simon SB, McGillem MJ, LeFree MT, Friedman HZ, Vogel RA. Automated quantitative coronary arteriography: morphologic and physiologic validation in vivo of a rapid digital angiographic method. Circulation 1987;75:452–460.

    PubMed  CAS  Google Scholar 

  49. Cusma JT, Spero LA, Hanemann JD, Bashore TM, Morris KG. A multiuser environment for the display and processing of digital cardiac angiographic images. Proc SPIE 1990;1233:310–320.

    Google Scholar 

  50. Spears JR, Sandor T. Quantitation of coronary artery stenosis severity: limitations of angiography and computerized information extraction. In: Reiber JHC, Serruys PW, eds. State of the Art in Quantitative Coronary Arteriography. Dordrecht: Martinus Nijhoff, 1986:103.

    Google Scholar 

  51. Sanders WJ, Alderman EL, Harrison DC. Coronary artery quantitation using digital image processing techniques. IEEE Comput Cardiol 1979:15.

    Google Scholar 

  52. Kirkeeide RL, Smalling RW, Gould KL. Automated measurements of artery diameter from arteriograms. Circulation 1982;66:II–325 (abstr).

    Google Scholar 

  53. Doiot PA. On the accuracy of densitometric measurements of coronary artery stenosis based on Lambert-Beer’s absorption law. In: Reiber JHC, Serruys PW, eds. New Developments in Quantitative Coronary Arteriography. Dordrecht: Martinus Nijhoff, 1988:115.

    Google Scholar 

  54. Parker DL, Pope DL, Petersen JC, et al. Quantitation in cardiac video-densitometry—Computers in cardiology. Long Beach: IEEE Comp Soc 1984:119.

    Google Scholar 

  55. Nichols AB, Gabrieli CFO, Fenoglio JJ Jr, Esser PD. Quantification of relative coronary arterial stenosis by cinevideodensitometric analysis of coronary arteriograms. Circulation 1984;69:512.

    PubMed  CAS  Google Scholar 

  56. LeFree MT, Simon SB, Lewis RJ, et al. Digital radiographic coronary artery quantification. Comput Cardiol 1985:99.

    Google Scholar 

  57. Johnson MR, Skorton DJ, Ericksen EE, et al. Videodensitometric analysis of coronary stenoses in vivo geometric and physiologic validation in humans. Invest Radiol 1988;23:891–898.

    PubMed  CAS  Google Scholar 

  58. Whiting JS, Pfaff JM, Eigler NL. Advantages and limitations of videodensitometry in quantitative coronary angiography. In: Reiber JHC, Serruys PW, eds. Quantitative Coronary Arteriography. The Netherlands: Kluwer Academic Publishers, 1991:43.

    Google Scholar 

  59. Spears JR, Sandor T, Als AV, et al. Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms. Circulation 1983;68:453–461.

    PubMed  CAS  Google Scholar 

  60. Leung WH, Demopulos PA, Alderman EL, Sanders W, Stadius ML. Evaluation of catheters and metallic catheter markers as calibration standard for measurement of coronary dimension. Cathet Cardiovasc Diagn 1990;21:148–153.

    PubMed  CAS  Google Scholar 

  61. Reiber JHC, Kooijman CJH, den Boer A, Serruys PW. Assessment of dimensions and image quality of coronary contrast catheters from cineangiograms. Cathet Cardiovasc Diagn 1985;11:521–531.

    PubMed  CAS  Google Scholar 

  62. Ellis SG, Pinto IMF, McGillem MJ, DeBoe SF, LeFree MT, Mancini GBJ. Accuracy and reproducibility of quantitative coronary arteriography using 6 and 8 French catheters with cineangiographic acquisition. Cathet Cardiovasc Diagn 1991;22:52–55.

    PubMed  CAS  Google Scholar 

  63. DiMario C, Hermans WRM, Rensing BJ, Serruys PW. Calibration using angiographic catheters as scaling devices—importance of filming the catheters not filled with contrast medium. Am J Cardiol 1992;69:1377–1378.

    CAS  Google Scholar 

  64. Fortin DF, Spero LA, Cusma JT, Santoro L, Burgess R, Bashore TM. Pitfalls in the determination of absolute dimensions using angiographic catheters as calibration devices in quantitative angiography. Am J Cardiol 1991;68:1176–1182.

    PubMed  CAS  Google Scholar 

  65. Lesperance J, Hudon G, White CW, Laurier J, Waters D. Comparison by quantitative angiographic assessment of coronary stenoses of one view showing the severest narrowing to two orthogonal views. Am J Cardiol 1989;64:462–465.

    PubMed  CAS  Google Scholar 

  66. Katz LN, Lindner E. Quantitative relation between reactive hyperemia and the myocardial ischemia which it follows. Am J Physiol 1939;126:283.

    Google Scholar 

  67. Click RL, Holmes DR, Vlietstra RE, Kosinski AS, Kronmal RA. Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival—a report from the coronary artery surgery study. J Am Coll Cardiol 1989;13:531–537.

    PubMed  CAS  Google Scholar 

  68. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984;310:819–824.

    PubMed  CAS  Google Scholar 

  69. Wilson RF, Laughlin DE, Holida MD, Hartley CJ, Marcus JL, White CW. Transluminal subselective measurement of coronary blood flow velocity and vasodilator reserve in man. Circulation 1985;72(1):82–92.

    PubMed  CAS  Google Scholar 

  70. Wilson RF, Laughlin DE, Ackell Ph, et al. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985;72:82.

    PubMed  CAS  Google Scholar 

  71. Wilson RF, White CW. Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 1986;73:444.

    PubMed  CAS  Google Scholar 

  72. Wilson RF, White CW. Serious ventricular dysrhythmias after intracoronary papaverine. Am J Cardiol 1988;62:1301–1302.

    PubMed  CAS  Google Scholar 

  73. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990;82:1595–1606.

    PubMed  CAS  Google Scholar 

  74. Wilson RF, White CW. Does coronary bypass surgery restore normal coronary flow reserve? The effect of diffuse atherosclerosis and focal obstructive lesions. Circulation 1987;76:563–571.

    PubMed  CAS  Google Scholar 

  75. Wilson RF. Assessing the severity of coronary artery stenoses. N Engl J Med 1996;334:1735–1737.

    PubMed  CAS  Google Scholar 

  76. Pijls NHJ, Van Gelder B, Van der Voort P, et al. Fractional flow reserve: a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995;92:3183–3193.

    PubMed  CAS  Google Scholar 

  77. Pijls NHJ, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996;334:1703–1708.

    PubMed  CAS  Google Scholar 

  78. Bech GJW, Pijls NHJ, De Bruyne B, et al. Usefulness of fractional flow reserve to predict clinical outcome after balloon angioplasty. Circulation 1999;99:883–888.

    PubMed  CAS  Google Scholar 

  79. Bech GJWs, DeBruyne B, Bonnier HJRM, et al. Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol 1998;31:841–847.

    PubMed  CAS  Google Scholar 

  80. Lesser JR, Wilson RF, White CW. Physiologic assessment of coronary stenoses of intermediate severity can facilitate patient selection for coronary angioplasty. Coronary Artery Dis 1990;1:697–705.

    Google Scholar 

  81. Bech GJW, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 2001;103:2928–2934.

    PubMed  CAS  Google Scholar 

  82. von Restorff W, Hofling B, Holtz J, Bassenge E. Effect of increased blood fluidity through homodilution on coronary circulation at rest and during exercise in dogs. Pflugers Arch 1975;357:15–24.

    Google Scholar 

  83. Marcus ML, Doty DB, Hiratzka LF, Wright CB, Eastham CL. Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med 1982:307:1362–1366.

    PubMed  CAS  Google Scholar 

  84. Olinger GN, Mulder DG, Maloney JV Jr, Buckberg GD. Phasic coronary flow: intraoperative evaluation of flow distribution, myocardial function, and reactive hyperemic response. Ann Thorac Surg 1976;21:397–404.

    PubMed  CAS  Google Scholar 

  85. White CW. Clinical applications of Doppler coronary flow reserve measurements. Am J Cardiol 1993;71:10D–16D.

    PubMed  CAS  Google Scholar 

  86. Ophertz D, Zebe H, Weihe E, et al. Reduced coronary dilator capacity and ultrastructural changes in patients with angina pectoris but normal coronary arteriograms. Circulation 1981;63:817–825.

    Google Scholar 

  87. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987;76:1183.

    PubMed  CAS  Google Scholar 

  88. McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure, and ventricular preload. Circulation 1990;81:1319–1328.

    PubMed  CAS  Google Scholar 

  89. Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993;87:1354–1367.

    PubMed  CAS  Google Scholar 

  90. Little WC, Applegate RJ. Role of plaque size and degree of stenosis in acute myocardial infarction. Cardiol Clin 1996;14(2):221–228.

    PubMed  CAS  Google Scholar 

  91. Crossman DC, Larkin SW, Fuller RW, Davies GJ, Maseri A. Substance P dilates epicardial coronary arteries and increases coronary blood flow in humans. Circulation 1989;80:475–484.

    PubMed  CAS  Google Scholar 

  92. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986;315:1046–1051.

    PubMed  CAS  Google Scholar 

Angiographic Findings in Infarction and Acute Coronary Syndromes

  1. Wilson RF, Ackell PH, Wysham DG, Buchanan DA, White CW. Effect of tissue plasminogen activator (rt-PA) on coronary luminal dimensions in patients with abrupt onset of unstable angina. Clin Res 1986;34:(4) (abstr).

    Google Scholar 

  2. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild to moderate coronary artery disease? Circulation 1988;78:1157–1166.

    PubMed  CAS  Google Scholar 

  3. Little WC. Angiographic assessment of the culprit coronary artery lesion before acute myocardial infarction. Am J Cardiol 1990;66:44G–47G.

    PubMed  CAS  Google Scholar 

  4. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12:56–62.

    PubMed  CAS  Google Scholar 

  5. Hacket D, Verwilghen J, Davies G, Maseri A. Coronary stenoses before and after acute myocardial infarction. Am J Cardiol 1989;63:1517–1518.

    Google Scholar 

  6. Webster MWI, Chesebro JH, Smith HC, et al. Myocardial infarction and coronary artery occlusion: a prospective 5 yr angiographic study. J Am Coll Cardiol 1990;15:218A.

    Google Scholar 

  7. Wilson, RF, Holida MD, White CW. Quantitative angiographic morphology of coronary stenoses leading to myocardial infarction or unstable angina. Circulation 1986;73:286–293.

    PubMed  CAS  Google Scholar 

  8. DeWood MA, Spores J, Notske RN, Mouser LT, Burroughs R, Mohiuddin S. Incidence of total coronary occlusion and thrombosis in the early phase of acute transmural myocardial infarction. Clin Res 1979;27:162.

    Google Scholar 

  9. DeWood MA, Stifter WF, Simpson CS, et al. Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 1986;315:417–423.

    PubMed  CAS  Google Scholar 

  10. Falk E. Thrombosis in unstable angina: Pathologic aspects. Cardiovasc Clin 1987;18(1):137–149.

    PubMed  CAS  Google Scholar 

  11. Davies MJ, Thomas AC. Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985;53:363–373.

    PubMed  CAS  Google Scholar 

  12. Falk E. Coronary thrombosis: Pathogenesis and clinical manifestations. Am J Cardiol 1991;68:288–358.

    Google Scholar 

  13. Sherman CT, Litvack F, Grundfest W, et al. Coronary angioscopy in patients with unstable angina pectoris. N Engl J Med 1986;315:913–919.

    PubMed  CAS  Google Scholar 

  14. Ambrose JA, Hjemdahl-Monsen C, Borrico S, et al. Quantitative and qualitative effects of intracoronary streptokinase in unstable angina and non-Q wave infarction. J Am Coll Cardiol 1987;9:1156–1165.

    PubMed  CAS  Google Scholar 

  15. Levin DC, Fallon JT. Significance of the angiographic morphology of localized coronary stenosis. Histopathologic correlations. Circulation 1982;66:316.

    PubMed  CAS  Google Scholar 

  16. Davies SW, Marchant B, Lyons JP, et al. Coronary lesion morphology in acute myocardial infarction: demonstration of early remodeling after streptokinase treatment. J Am Coll Cardiol 1990;16:1079–1086.

    PubMed  CAS  Google Scholar 

  17. Ambrose JA, Winters SL, Arora RR, et al. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 1986;7:472–478.

    PubMed  CAS  Google Scholar 

  18. Ambrose JA, Winters SL, Arora RR, et al. Coronary angiographic morphology in myocardial infarction: a link between the pathogenesis of unstable angina and myocardial infarction. J Am Coll Cardiol 1985;6:1233–1238.

    PubMed  CAS  Google Scholar 

  19. Davies SW, Marchant B, Lyons JP, et al. Coronary lesion morphology in acute myocardial infarction: demonstration of early remodeling after streptokinase treatment. J Am Coll Cardiol 1990;16:1079–1086.

    PubMed  CAS  Google Scholar 

  20. TIMI Research Group. Immediate vs delayed catheterization and angioplasty following thrombolytic therapy for acute myocardial infarction: TIMI IIA results. JAMA 1988;260:2849–2858.

    Google Scholar 

  21. Gibson CM, Murphy SA, Rizzo MJ, et al. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Circulation 1999;99:1945–1950.

    PubMed  CAS  Google Scholar 

  22. Harrison DG, Ferguson DW, Collins SM, et al. Rethrombosis after reperfusion with streptokinase: importance of geometry of residual lesions. Circulation 1984;69:991–999.

    PubMed  CAS  Google Scholar 

  23. Davies SW, Marchant B, Lyons JP, et al. Irregular lesion morphology after thrombolysis predicts early clinical instability. J Am Coll Cardiol 1991;18:669–674.

    PubMed  CAS  Google Scholar 

  24. Freeman MR, Langer A, Wilson RF, Morgan CD, Armstrong PW. Thrombolysis in unstable angina: randomized double blind trial of tPA and placebo. Circulation 1992;85:150–157.

    PubMed  CAS  Google Scholar 

  25. Brown BG, Gallery CA, Badger RS, et al. Incomplete lysis of thrombus in the moderate underlying atherosclerotic lesion during intracoronary infusion of streptokinase for acute myocardial infarction: quantitative angiographic observations. Circulation 1986;73:653–661.

    PubMed  CAS  Google Scholar 

  26. Satler LF, Pallas RS, Bond OB, et al. Assessment of residual coronary arterial stenosis after thrombolytic therapy during acute myocardial infarction. Am J Cardiol 1987;59:1231–1233.

    PubMed  CAS  Google Scholar 

  27. Ellis SG, Topol EJ, George BS, et al. Recurrent ischemia without warning—analysis of risk factors for in-hospital ischemic events following successful thrombolysis with intravenous tissue plasminogen activator. Circulation 1989;80:1159–1165.

    PubMed  CAS  Google Scholar 

  28. White CW. Recurrent ischemic events after successful thrombolysis in acute myocardial infarction: the Achilles’ heel of thrombolytic therapy. Circulation 1989;80:1482–1485.

    PubMed  CAS  Google Scholar 

  29. Lower R. Tractus de Corde. Amsterdam: Elsevier, 1669.

    Google Scholar 

  30. Baroldi G, Mantero O, Scomazzoni G. The collaterals of the coronary arteries in normal and pathologic hearts. Circ Res 1956;4:223–229.

    PubMed  CAS  Google Scholar 

  31. Fulton WFM. Arterial anastomoses in the coronary circulation. II. Distribution, enumeration and measurement of coronary arterial anastomoses in health and disease. Scot Med J 1963;8:466–474.

    PubMed  CAS  Google Scholar 

  32. Fulton WF. The Coronary Arteries. Springfield, IL: Charles C Thomas, 1965.

    Google Scholar 

  33. Schaper W, Sharma HS, Quinkler W, Markert U, Wunsch M, Schaper J. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol 1990;15:513–518.

    PubMed  CAS  Google Scholar 

  34. Assessment of coronary artery disease. In: Yang SS, Bentivoglio LG, Maranhao V, Goldberg H, eds. From Cardiac Catherterization Data to Hemodynamic Parameters, 3rd ed. Philadelphia: FA Davis, 1988:256.

    Google Scholar 

  35. Levin DC. Pathways and functional significance of the coronary collateral circulation. Circulation 1974;50:831.

    PubMed  CAS  Google Scholar 

  36. Franklin D, McKnown D, McKnown M, et al. Development and regression of coronary collaterals induced by repeated, reversible ischemia in dogs. Fed Proc 1981;40:339 (abstr).

    Google Scholar 

  37. Yamamoto H, Tomoike H, Shimokawa H, Nabeyama S, Nakamura M. Development of collateral function with repetitive coronary occlusion in a canine model reduces myocardial reactive hyperemia in the absence of significant coronary stenosis. Circ Res 1984;55:623–632.

    PubMed  CAS  Google Scholar 

  38. Harrison DG, Sellke FW, Quillen JE. Neurohumoral regulation of coronary collateral vasomotor tone. Basic Res Cardiol 1990;85(suppl 1):121–129.

    PubMed  Google Scholar 

  39. Bache RJ, Foreman B, Hautamaa PV. Response of canine coronary collateral vessels to ergonovine and α-adrenergic stimulation. Am J Physiol 1991;261 (Heart Circ Physiol 30):H1019–H1025.

    PubMed  CAS  Google Scholar 

  40. Marcus ML. The Coronary Circulation in Health and Disease. New York: McGraw-Hill, 1983.

    Google Scholar 

  41. Takeshita A, Koiwaya Y, Nakamura M, Yamamoto K, Torii S. Immediate appearance of coronary collaterals during ergonovine-induced arterial spasm. Chest 1982:82:319.

    PubMed  CAS  Google Scholar 

  42. Rentrop KP, Cohen M, Blanke H, Phillips RA. Changes in collateral channel filling immediately after controlled coronary artery occlusion by angioplasty balloon in human subjects. J Am Coll Cardiol 1985;5:587.

    PubMed  CAS  Google Scholar 

  43. Meier B, Luethy P, Finci L, Steffenino GD, Rutishauser W. Coronary wedge pressure in relation to spontaneously visible and recruitable collaterals. Circulation 1987;75:906–913.

    PubMed  CAS  Google Scholar 

  44. Helfant RH, Vokonas PS, Gorlin R. Functional importance of the human coronary collateral circulation. N Engl J Med 1971;284:1277–1281.

    PubMed  CAS  Google Scholar 

  45. Gorlin R. Coronary collaterals. In: Coronary Artery Disease. Philadelphia: Saunders, 1976.

    Google Scholar 

  46. Sasayama S, Fujita M. Recent insights into coronary collateral circulation. Circulation 1992;85:1197–1204.

    PubMed  CAS  Google Scholar 

  47. Rentrop KP, Thorton JC, Feit F, Buskirk MV. Determinants and protective potential as assessed by an angioplasty model of coronary arterial collaterals. Am J Cardiol 1988;61:677–684.

    PubMed  CAS  Google Scholar 

  48. Hirai T, Fujita M, Nakajima H, et al. Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation 1989;79:791–796.

    PubMed  CAS  Google Scholar 

  49. Epstein SE. Influence of stenosis severity on coronary collateral development and importance of collaterals in maintaining left ventricular function during acute coronary occlusion. Am J Cardiol 1988;61:866–868.

    PubMed  CAS  Google Scholar 

  50. Topol EJ, Ellis SG. Coronary collaterals revisited: Accessory pathway to myocardial preservation during infarction. Circulation 1991;83:1084–1086.

    PubMed  CAS  Google Scholar 

  51. Rentrop KP, Cohen M, Blanke H, Phillips RA. Changes in collateral channel filling immediately after controlled coronary occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 1985;5:587–592.

    PubMed  CAS  Google Scholar 

  52. Schaper W. Residual Perfusion of Acutely Ischemic Heart Muscle. Amsterdam: Elsevier Biomedical, 1979:345.

    Google Scholar 

Coronary Vasospasm

  1. Ginsburg R, Schroeder JS. Coronary spasm producing coronary thrombosis. N Engl J Med 1983;309:648.

    Google Scholar 

  2. Oliva PB, Potts DE, Pluss RG. Coronary arterial spasm in Prinzmetal angina. N Engl J Med 1973;288:745–751.

    PubMed  CAS  Google Scholar 

  3. Maseri A, Chierchia S. Coronary artery spasm: demonstration, definition, diagnosis, and consequences. Prog Cardiovasc Dis 1982;25:169–192.

    PubMed  CAS  Google Scholar 

  4. Schroeder JS, Bolen JL, Quint RA, et al. Provocation of coronary spasm with ergonovine maleate. Am J Cardiol 1977;40:487–491.

    PubMed  CAS  Google Scholar 

  5. Heupler FA, Proudfit WL, Razavi M, Shirey EK, Greenstreet R, Sheldon WC. Ergonovine maleate provocative test for coronary arterial spasm. Am J Cardiol 1978;41:631–640.

    PubMed  Google Scholar 

  6. Curry RC, Pepine CJ, Sabom MB, Feldman RL, Christie LG, Conti CR. Effects of ergonovine in patients with and without coronary artery disease. Circulation 1977;56:804–809.

    Google Scholar 

  7. Chahine RA, Raizner AE, Ishimori T, Luchi RJ, McIntosh HD. The incidence and clinical implications of coronary artery spasm. Circulation 1975;52:972–978.

    PubMed  CAS  Google Scholar 

  8. Curry RC, Pepine CJ, Sabom MB, et al. Hemodynamic and myocardial metabolic effects of ergonovine in patients with chest pain. Circulation 1978;58:648–654.

    PubMed  Google Scholar 

  9. Rall TW. Oxytocin, prostaglandins, ergot alkaloids, and other drugs; tocolytic agents. In: Gilman G, Goodman LS, Rall TW, Murad F. The Pharmacological Basis of Therapeutics. New York: Macmillan, 1985:936–940.

    Google Scholar 

  10. Kugiyama K, Ohgushi M, Motoyama T, et al. Enhancement of constrictor response of spastic coronary arteries to acetylcholine but not to phenylephrine in patients with coronary spastic angina. J Cardiovasc Pharmacol 1999;33:414–419.

    PubMed  CAS  Google Scholar 

  11. Feldman RL, Curry RC, Pepine CJ, Mehta J, Conti CR. Regional coronary hemodynamic effects of ergonovine in patients with and without variant angina. Circulation 1980;62:149–159.

    PubMed  CAS  Google Scholar 

  12. Cipriano PR, Guthaner DF, Orlick AE, Ricci DR, Wexler L, Silverman JF. The effects of ergonovine maleate on coronary arterial size. Circulation 1979;59:82–89.

    PubMed  CAS  Google Scholar 

  13. Magder SA, Johnstone DE, Huckell VF, Adelman AG. Experience with ergonovine provocative testing for coronary arterial spasm. Chest 1981;79:638–646.

    PubMed  CAS  Google Scholar 

  14. Kodama K, Yamagishi M, Nanto S, et al. Comparison of coronary hemodynamic and cardiac metabolic alterations during coronary artery spasm associated with ST segment elevation or depression. Jpn Circ 1985;49:422–431.

    CAS  Google Scholar 

  15. Whittle JL, Feldman RL, Pepine CJ, Curry RC, Conti CR. Variability of electrocardiographic responses to repeated ergonovine provocation in variant angina patients with coronary artery spasm. Am Heart J 1982;103:161–167.

    PubMed  CAS  Google Scholar 

  16. Matsuda Y, Ogawa H, Moritani K, et al. Transient appearance of collaterals during vasospastic occlusion in patients without obstructive coronary atherosclerosis. Am Heart J 1985;109:759–763.

    PubMed  CAS  Google Scholar 

  17. Takeshita A, Koiwaya Y, Nakamura M, Yamamoto K, Torii S. Immediate appearance of coronary collaterals during ergonovine-induced arterial spasm. Chest 1982;82:319–322.

    PubMed  CAS  Google Scholar 

  18. Hom GA, Brent BN. Coronary artery vasospasm during treatment with intravenous nitroglycerin. Cathet Cardiovasc Diagn 1985;11:423–426.

    PubMed  CAS  Google Scholar 

  19. Kurnik PB, Spadaro JJ, Nordlicht SM, Tiefenbrunn AJ, Ludbrook PA. Prolonged coronary vasoconstrictor effect of ergonovine maleate. Cathet Cardiovasc Diagn 1984;10:353–361.

    PubMed  CAS  Google Scholar 

  20. Mantyla R, Kanto J. Clinical pharmacokinetics of methylyergometrine (methlyergonovine). Int J Clin Pharmacol Ther Toxicol 1981;19:386–391.

    PubMed  CAS  Google Scholar 

  21. Harding MB, Leithe ME, Mark DB, et al. Ergonovine maleate testing during cardiac catheterization: a 10-year perspective in 3,447 patients without significant coronary artery disease or Prinzmetal’s variant angina. J Am Coll Cardiol 1992;20:107–111.

    PubMed  CAS  Google Scholar 

  22. Bertrand ME, LaBlanche JM, Tilmant PY, et al. Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary arteriography. Circulation 1982;65:1299–1308.

    PubMed  CAS  Google Scholar 

  23. Ogasawara K, Aizawa T, Nishimura K, Satoh H, Fujii J, Katoh K. Beta-thromboglobulin release within coronary circulation—a potential role of platelets in ergonovine-induced coronary vasospasm. Int J Cardiol 1986;10:15–22.

    PubMed  CAS  Google Scholar 

  24. Yui Y, Hattori R, Takatsu Y, Kawai C. Selective thromboxane A2 synthetase inhibition in vasospastic angina pectoris. J Am Coll Cardiol 1986;7:25–29.

    PubMed  CAS  Google Scholar 

  25. Maleki M, Manley JC. Venospastic phenomena of saphenous vein bypass grafts: possible causes for unexplained postoperative recurrence of angina or early or late occlusion of vein bypass grafts. Br Heart J 1989;62:57–60.

    PubMed  CAS  Google Scholar 

  26. Hosio A, Kotake H, Mashiba H. Significance of coronary artery tone in patients with vasospastic angina. J Am Coll Cardiol 1989;14:604–609.

    Google Scholar 

  27. Hill JA, Feldman RL, Pepine CJ, Conti CR. Regional coronary artery dilation response in variant angina. Am Heart J 1982;104:226–233.

    PubMed  CAS  Google Scholar 

  28. Kaski JC, Maseri A, Vejar M, Crea F, Hackett D. Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. J Am Coll Cardiol 1989;14:1456–1463.

    PubMed  CAS  Google Scholar 

  29. Feldman RL, Pepine CJ, Whittle JL, Curry RC, Conti CR. Coronary hemodynamic findings during spontaneous angina in patients with variant angina. Circulation 1981;64:76–83.

    PubMed  CAS  Google Scholar 

  30. Bentivoglio LG, Leo LR, Wolf NM, Meister SG. Frequency and importance of unprovoked coronary spasm in patients with angina pectoris undergoing percutaneous transluminal coronary angioplasty. Am J Cardiol 1983;51:1067–1071.

    PubMed  CAS  Google Scholar 

  31. Bott-Silverman C, Heupler FA, Yiannikas J. Variant angina: comparison of patients with and without fixed severe coronary artery disease. Am J Cardiol 1984;54:1173–1175.

    PubMed  CAS  Google Scholar 

  32. Mark DB, Califf RM, Morris KG, et al. Clinical characteristics and long-term survival of patients with variant angina. Circulation 1984;69:880–888.

    PubMed  CAS  Google Scholar 

  33. Egashira K, Kikuchi Y, Sagara T, Sugihara M, Nakamura M. Long-term prognosis of vasospastic angina without significant atherosclerotic coronary artery disease. Jpn Heart J 1987;28:841–849.

    PubMed  CAS  Google Scholar 

  34. Nobuyoshi M, Tanaka M, Nosaka H, et al. Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol 1991;18:904–910.

    PubMed  CAS  Google Scholar 

  35. Caralis DG, Deligonul U, Kern MJ, Cohen JD. Smoking is a risk factor for coronary spasm in young women. Circulation 1992;85:905–909.

    PubMed  CAS  Google Scholar 

  36. Suzuki Y, Tokunaga S, Ikeguchi S, et al. Induction of coronary artery spasm by intracoronary acetylcholine: comparison with intracoronary ergonovine. Am Heart J 1992;124:39–47.

    PubMed  CAS  Google Scholar 

  37. Wright CM, Engler R, Maisel A. Coronary thrombosis precipitated by hyperventilation-induced vasospasm. Am Heart J 1988;116:867–869.

    PubMed  CAS  Google Scholar 

  38. Ginsburg R, Bristow MR, Kantrowitz N, Baim DS, Harrison DC. Histamine provocation of clinical coronary artery spasm: Implications concerning pathogenesis of variant angina pectoris. Am Heart J 1981;102:819–822.

    PubMed  CAS  Google Scholar 

Spontaneous Coronary Dissection

  1. DeMaio S, Kinsella SH, Silverman ME. Clinical course and long-term prognosis of spontaneous coronary artery dissection. Am J Cardiol 1989;64:471–474.

    PubMed  Google Scholar 

  2. Bulkley BH, Roberts WC. Dissecting aneurysm (hematoma) limited to coronary artery. Am J Med 1973;55:747–756.

    PubMed  CAS  Google Scholar 

  3. Mathieu D, Larde D, Vasile N. Primary dissecting aneurysms of the coronary arteries: case report and literature review. Cardiovasc Intervent Radiol 1984;7:71–74.

    PubMed  CAS  Google Scholar 

  4. Claudon DG, Claudon DB, Edwards JE. Primary dissecting aneurysm of coronary artery. Circulation 1972;45:259–266.

    PubMed  CAS  Google Scholar 

  5. Brody GL, Burton JF, Zawadzki ES, French AJ. Dissecting aneurysms of the coronary artery. N Engl J Med 1965;273:1–5.

    PubMed  CAS  Google Scholar 

  6. Yeoh J, Choo H, Soo C, Lim Y, Yan C. Spontaneous coronary artery dissection in a young man with anterior myocardial infarction. Cathet Cardiovasc Diagn 1991;24:186–188.

    PubMed  CAS  Google Scholar 

  7. Heilbrunn A, Zimmerman JM. Coronary artery dissection: a complication of cannulation. J Thorac Cardiovasc Surg 1965;49:767.

    PubMed  CAS  Google Scholar 

  8. Roy P, Finci L, Bopp P, Meier B. Emergency balloon angioplasty and digital subtraction angiography in the management of an acute iatrogenic occlusive dissection of a saphenous vein graft. Cathet Cardiovasc Diagn 1989;16:176–179.

    PubMed  CAS  Google Scholar 

  9. Thayer JO, Healy RW, Maggs PR. Spontaneous coronary artery dissection. Ann Thorac Surg 1987;44:97–102.

    PubMed  CAS  Google Scholar 

  10. Orbe LC, Gallego FG, Sobrino N, et al. Acute myocardial infarction after blunt chest trauma in young people. Cathet Cardiovasc Diagn 1991;24:182–185.

    Google Scholar 

  11. Lee FH, Yeung AC, Fowler MB, Fitzgerald PJ. Spontaneous postpartum dissection. Circulation 1999;99:721.

    PubMed  CAS  Google Scholar 

  12. Robinowitz M, Virmani R, McAllister H. Spontaneous coronary artery dissection and eosinophilic inflammation: a cause and effect relationship? Am J Med 1982;72:923–927.

    PubMed  CAS  Google Scholar 

  13. Nishikawa H, Nakanishi S, Nishiyama S, Nishimura S, Seki A, Yamaguchi H. Primary coronary artery dissection observed at coronary angiography. Am J Cardiol 1988;61:645–648.

    PubMed  CAS  Google Scholar 

  14. Alvarez J, Deal CW. Spontaneous dissection of the left main coronary artery: case report and review of the literature. Aust NZ J Med 1991;21:891–892.

    CAS  Google Scholar 

  15. Himbert D, Makowski S, Laperche T, Steg G, Juliard J, Gourgon R. Left main coronary spontaneous dissection: progressive angiographic healing without coronary surgery. Am Heart J 1991;22:747–756.

    Google Scholar 

  16. Behnam R, Tillinghast S. Thrombolytic therapy in spontaneous coronary artery dissection. Clin Cardiol 1991;14:611–614.

    PubMed  CAS  Google Scholar 

  17. Vale PR, Baron DW. Coronary stenting for spontaneous coronary dissection: a case report and review of the literature. Cathet Cardiovasc Diagn 1998;45:280–286.

    PubMed  CAS  Google Scholar 

Myocardial Infarction with Normal Coronary Arteries

  1. Betrriu A, Pare JC, Sanz GA, et al. Myocardial infarction in normal coronary arteries: a prospective clinical-angiographic study. Am J Cardiol 1981;48:28–38.

    Google Scholar 

  2. Rigatelli G, Rigatelli G, Rossi P, Docali G. Normal angiogram in acute coronary syndromes: the underestimated role of alternative substrates of myocardial ischemia. Int J Cardiovasc Imaging 2004;20:471–475.

    PubMed  Google Scholar 

  3. Thompson SI, Vieweg WVR, Alpert JS. Hagan AD. Incidence and age distribution of patients with myocardial infarction and normal coronary arteriograms. Cathet Cardiovasc Diagn 1977;3:1–9.

    PubMed  CAS  Google Scholar 

  4. Thompson EA, Ferraris S, Gress T, Ferraris V. Gender differences and predictors of mortality in spontaneous coronary artery dissection: a review of reported cases. J Invasive Cardiol 2005;17:59–61.

    PubMed  Google Scholar 

  5. Cipriano PR, Koch FH, Rosenthal SJ, Baim DS, Ginsburg R, Schroeder JS. Myocardial infarction in patients with coronary artery spasm demonstrated by angiography. Am Heart J 1983;105:542–547.

    PubMed  CAS  Google Scholar 

  6. Gersh BJ, Chesebro JH, Bove AA. Myocardial infarction with angiographically “normal” coronary arteries: Is this rapid progression of early coronary artery disease? Chest 1984;84:654–656

    Google Scholar 

  7. Legrand V, Deliege M, Henrard L, Boland J, Kulbertus H. Patients with myocardial infarction and normal coronary arteriogram. Chest 1982;82:678–685.

    PubMed  CAS  Google Scholar 

  8. Lindsay J, Pichard AD. Acute myocardial infarction with normal coronary arteries. Am J Cardiol 1984;54;902–904.

    PubMed  Google Scholar 

  9. Rosenblatt A, Selzer A. The nature and clinical features of myocardial infarction with normal coronary arteriogram. Circulation 1977;55:578–580.

    PubMed  CAS  Google Scholar 

  10. Ciraulo DA, Bresnahan GF, Frankel PS, Isely PE, Zimmerman WR, Chesne RB. Transmural myocardial infarction with normal coronary angiograms and with single vessel coronary obstruction. Chest 1983;83:196–202.

    PubMed  CAS  Google Scholar 

  11. Glover MU, Kuber MT, Warren SE, Vieweg WVR. Myocardial infarction before age 36: risk factor and arteriographic analysis. Am J Cardiol 1982;49:1600–1603.

    PubMed  CAS  Google Scholar 

  12. Smith HWB, Liberman HA, Brody SL, Battey LL, Donohue B, Morris DC. Acute myocardial infarction temporally related to cocaine use: clinical, angiographic and pathophysiologic observations. Ann Intern Med 1987;107:13–18.

    PubMed  Google Scholar 

  13. Ottervanger JP, Wilson JH, Stricker BH. Drug-induced chest pain and myocardial infarction. Reports to a national centre and review of the literature. Eur J Clin Pharmacol 1997;53(2):105–110.

    PubMed  CAS  Google Scholar 

  14. Sharkey SW, Lesser JR, Zenovich AG, et al. Acute and reversible cardiomyopathy provoked by stress in women from the United States. Circulation. 2005;111:472–479.

    PubMed  Google Scholar 

  15. Wittstein IS, Thiemann DR, Lima JA, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005;10;352(6):539–548.

    PubMed  CAS  Google Scholar 

Microcirculatory Angina

  1. Likoff W, Segal BL, Kasparian H. Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease. N Engl J Med 1967;276:1063.

    PubMed  CAS  Google Scholar 

  2. Kemp HG. Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol 1973;32:375.

    PubMed  Google Scholar 

  3. Cannon RO, Schenke WH, Leon MB, et al. Limited coronary flow reserve after dipyridamole in patients with ergonovineinduced coronary vasoconstriction. Circulation 1987;75:163.

    PubMed  Google Scholar 

  4. Cannon RO, Bonow RO, Bacharach SL, et al. Left ventricular dysfunction in patients with angina pectoris, normal epicardial coronary arteries, and abnormal vasodilator reserve. Circulation 1985;7:218.

    Google Scholar 

  5. Hasdai D, Holmes DR Jr, Higano ST, Burnett JC Jr, Lerman A. Prevalence of coronary blood flow reserve abnormalities among patients with nonobstructive coronary artery disease and chest pain. Mayo Clin Proc 1998;73:1133–1140.

    PubMed  CAS  Google Scholar 

  6. Cannon RO. Microvascular angina: pathophysiology, diagnostic techniques and interventions. In: Braunwald E, ed. Heart Disease: A Textbook of Cardiovascular Medicine, 3rd ed., update 15. New York: WB Saunders, 1991:343–350.

    Google Scholar 

  7. Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergman SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 1990;16:586–595.

    PubMed  CAS  Google Scholar 

  8. Cannon RO, Epstein SE. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol 1988;61:1338

    PubMed  Google Scholar 

  9. Cannon RO, Watson, RM, Rosing DR, et al. Angina caused by reduced vasodilator reserve of the small coronary arteries. J Am Coll Cardiol 1983;1:1359–1373.

    PubMed  Google Scholar 

  10. Opherk D, Zebe H, Weihe E, et al. Reduced coronary dilatory capacity and ultrastructural changes of the myocardium in patients with angina pectoris but normal coronary arteriograms. Circulation 1981;63:817.

    PubMed  CAS  Google Scholar 

  11. Cannon RO III. Cardiovascular Syndrome X. Is it real? Contemp Intern Med 1998:10:7–16.

    Google Scholar 

  12. Marcus ML, Mueller TM, Gascho JA, Kerber KE. Effects of cardiac hypertrophy secondary to hypertension on the coronary circulation. Am J Cardiol 1979;44:747–753

    Google Scholar 

  13. Opherk D, Schwartz F, Mall G, Manthey J, Baller D, Kubler W. Coronary dilatory capacity in idiopathic dilated cardiomyopathy: analysis of 16 patients. Am J Cardiol 1983;51:1657–1662.

    PubMed  CAS  Google Scholar 

  14. Brush JE, Cannon RO, Schenke WH, et al. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med 1988;319:1302–1307.

    PubMed  Google Scholar 

  15. Ryan TJ, Treasure CB, Yeung AC, Klein JL, Selwyn AP, Ganz P. Impaired endothelium-dependent dilation of the coronary microvasculature in patients with atherosclerosis. Circulation 1991;84(abst):II624.

    Google Scholar 

  16. Selke FW, Armstrong ML, Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 1990;81:1586.

    Google Scholar 

  17. Wilson RF, Christensen BV, Zimmer S, Laxson D. The effects of adenosine on human coronary circulation. Circulation 1990;82:1595–1606.

    PubMed  CAS  Google Scholar 

  18. Wilson RF, Marcus ML, Christensen BV, Talman CL, White CW. The accuracy of exercise electrocardiography in predicting the physiologic significance of coronary arterial stenoses. Circulation 1991;83:412–421.

    PubMed  CAS  Google Scholar 

  19. Sax FL, Cannon RO, Hanson C, Epstein SE. Impaired forearm vasodilator reserve in patients with microvascular angina. N Engl J Med 1987;317:1366–1370.

    PubMed  CAS  Google Scholar 

  20. Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A. Evidence of impaired endothelium dependent coronary vasodilation in patients with angina pectoris and normal coronary angiograms. N Engl J Med 1993;328:1659–1664.

    PubMed  CAS  Google Scholar 

  21. Fish RP, Nabel EG, Selwyn AP, et al. Responses of coronary arteries of cardiac transplant patients to acetylcholine. J Clin Invest 1988;81:21–31.

    PubMed  CAS  Google Scholar 

  22. Vogt M, Rabenau O, Motz W, Strauer BE. Evidence of endothelial dysfunction in patients with angina pectoris and angiographically normal coronary arteries. Circulation 1989;80 (abstr):II436.

    Google Scholar 

Radiation-Induced Coronary Artery Disease

  1. McReynolds RA, Gold GL, Roberts WC. Coronary heart disease after mediastinal irradiation for Hodgkin’s disease. Am J Med 1976;60:39–45.

    PubMed  CAS  Google Scholar 

  2. Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin disease. JAMA 1993;270:1949–1955.

    PubMed  CAS  Google Scholar 

  3. Reinders JG, Heijmen BJ, Olofsen-van Acht MJ, et al. Ischemic heart disease after mantlefield irradiation for Hodgkin disease in long-term follow-up. Radiother Oncol 1999;51:35–42.

    PubMed  CAS  Google Scholar 

  4. Steward JR, Cohn KE, Fajardo LF, Hancock EW, Kaplan HS. Radiation-induced heart disease. Radiology 1967;89:302–310.

    Google Scholar 

  5. Pohjola-Sintonen S, Totterman KJ, Almo M, Siltanen P. Late cardiac effects of mediastinal radiotherapy in patients with Hodgkin’s disease. Cancer 1987;60:31–37.

    PubMed  CAS  Google Scholar 

  6. Brosius FC, Waller BF, Roberts WC. Radiation heart disease: Analysis of 16 young (aged 15–33 years) necropsy patients who received over 3,500 rads to the heart. Am J Med 1981;70:519–530.

    PubMed  Google Scholar 

  7. Theodoulou M, Seidman AD. Cardiac effects of adjuvant therapy for early breast cancer. Semin Oncol 2003;30:730–739.

    PubMed  CAS  Google Scholar 

  8. Tracy GP, Brown DE, Johnson LW, Gottlieb AJ. Radiationinduced coronary artery disease. JAMA 1974;228:1660–1662.

    PubMed  CAS  Google Scholar 

  9. Prentice RTW. Myocardial infarction following radiation. Lancet 1965;2:388.

    PubMed  CAS  Google Scholar 

  10. Stewart RJ, Cohn K, Hancock EW, et al. Radiation induced heart disease. Radiology 1967;89:302–310.

    Google Scholar 

  11. Carmel RJ, Kaplan HS. Mantle irradiation in Hodgkin’s disease: An analysis of technique, tumor eradication and complications. Cancer 1976;37:2813–2825.

    PubMed  CAS  Google Scholar 

Transplant-Related Arteriopathy

  1. Oguma S, Okazaki H, Jimbo M, Iguchi A, Takahashi H, Ishizaki M. Vascular rejection and arteriosclerosis. Transplantation Proceedings 1987;19:63–70.

    PubMed  CAS  Google Scholar 

  2. Lurie KG, Billingham ME, Jamieson SW, Harrison DC, Reitz BA. Pathogenesis and prevention of graft arteriosclerosis in an experimental heart transplant model. Transplantation 1981;31:41–47.

    PubMed  CAS  Google Scholar 

  3. Pucci AM, Forbes RDC, Billingham ME. Pathologic features in long-term cardiac allografts. J Heart Transplant 1990;9:339–345.

    PubMed  CAS  Google Scholar 

  4. Johnson DE, Gao SZ, Schroeder JS, DeCampli WM, Billingham ME. The spectrum of coronary artery pathologic findings in heart cardiac allografts. J Heart Transplant 1989;8:349–359.

    PubMed  CAS  Google Scholar 

  5. Libby P, Salomon RN, Payne DD, Schoen FJ, Pober JS. Functions of vascular wall cells related to development of transplantation-associated coronary arteriosclerosis. Transplant Proc 1989;21:3677–3684.

    PubMed  CAS  Google Scholar 

  6. Uretsky BF, Murali S, Reddy PS, et al. Development of coronary artery disease in cardiac transplant patients. Circulation 1987;76:827–834.

    PubMed  CAS  Google Scholar 

  7. Gao SZ, Schroeder JS, Alderman EL, et al. Prevalence of accelerated coronary artery disease in heart transplant survivors. Circulation 1989;80(suppl III):III100–105.

    PubMed  CAS  Google Scholar 

  8. Gao SZ, Alderman EL, Schroeder JS, Silverman JF, Hunt SA. Accelerated coronary vascular disease in the heart transplant patient: coronary arteriographic findings. J Am Coll Cardiol 1988;12:334–340.

    PubMed  CAS  Google Scholar 

  9. Olivari MT, Homans DC, Wilson RF, Kubo SH, Ring WS. Coronary artery disease in cardiac transplant patients receiving triple-drug immunosuppressive therapy. Circulation 1989;80(suppl III):III-111–III-115.

    CAS  Google Scholar 

  10. Gao SZ, Alderman EL, Schroeder JS, Hunt SA, Wiederhold V, Stinson EB. Progressive coronary luminal narrowing after cardiac transplantation. Circulation 1990;82(suppl IV):IV269–275.

    PubMed  CAS  Google Scholar 

  11. Nitkin RS, Hunt SA, Schroeder JS. Accelerated atherosclerosis in a cardiac transplant patient. J Åm Coll Cardiol 1985;6:243–245.

    PubMed  CAS  Google Scholar 

  12. Mulvagh SL, Thornton B, Frazier OH, et al. The older cardiac transplant donor: relation to graft function and recipient survival longer than 6 years. Circulation 1989;80(suppl III):III-126–III-132.

    CAS  Google Scholar 

  13. O’Neill B, Pflugfelder PW, Singh NR, Menkis AH, McKenzie FN, Kostuk WJ. Frequency of angiographic detection and quantitative assessment of coronary arterial disease one and three years after cardiac transplantation. Am J Cardiol 1989;63:1221–1226.

    PubMed  CAS  Google Scholar 

  14. Sharples LD, Mullin PA, Cary NRB, Large SR, Schofield PM, Wallwork J. A method of analyzing the onset and progression of coronary occlusive disease after transplantation and its effect on patient survival. Transplant 1993;12:381–387.

    CAS  Google Scholar 

  15. Kapadia SR, Nissen SE, Tuzcu EM. Impact of intravascular ultrasound in understanding transplant coronary artery disease. Curr Opin Cardiol 1999;14(2):140–150.

    PubMed  CAS  Google Scholar 

  16. Kapadia SR, Nissen SE, Ziada KM, et al. Development of transplantation vasculopathy and progression of donor-transmitted atherosclerosis: comparison by serial intravascular ultrasound imaging. Circulation 1998;98(24):2672–2678.

    PubMed  CAS  Google Scholar 

  17. Liang DH, Gao SZ, Botas J, et al. Prediction of angiographic disease by intracoronary ultrasonographic findings in heart transplant recipients. J Heart Lung Transplant 1996;15(10):980–987.

    PubMed  CAS  Google Scholar 

  18. Gao HZ, Hunt SA, Alderman EL, Liang D, Yeung AC, Schroeder JS. Relation of donor age and preexisting coronary artery disease on angiography and intracoronary ultrasound to later development of accelerated allograft coronary artery disease. J Am Coll Cardiol 1997;29(3):623–629.

    PubMed  CAS  Google Scholar 

  19. Davis SF, Yeung AC, Meredith IT, et al. Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation 1996;93(3):457–462.

    PubMed  CAS  Google Scholar 

  20. McGinn AL, Christensen BV, Meyer S, et al. Early impairment of nitroglycerine-induced coronary dilation after human cardiac transplantation. J Am Coll Cardiol 1991;17(2)309A (abstr).

    Google Scholar 

  21. Goldenberg IF, Levine TB. Coronary artery spasm in a denervated orthotopic transplanted human heart. Cathet Cardiovasc Diagn 1986;12:44–47.

    PubMed  CAS  Google Scholar 

Vasculitis

  1. Lie JT. Coronary vasculitis: A review in the current scheme of classification of vasculitis. Arch Pathol Lab Med 1987;111:224–233.

    PubMed  CAS  Google Scholar 

  2. Kawai S, Fukuda Y, Okada R. Atherosclerosis of the coronary arteries in collagen disease and allied disorders, with special reference to vasculitis as a preceding lesion of coronary atherosclerosis. Jpn Circ J 1982;46:1208–1221.

    PubMed  CAS  Google Scholar 

  3. Tanaka M, Abe T, Takeuchi E, Watanabe T, Tamaki S. Revascularization for coronary ostial stenosis in Takayasu’s disease with calcified aorta. Ann Thorac Surg 1992;53:894–895.

    PubMed  CAS  Google Scholar 

  4. Ishikawa K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu’s arteriopathy. J Am Coll Cardiol 1988;12:964–972.

    PubMed  CAS  Google Scholar 

  5. Cassling RS, Lortz JB, Olson DR, Hubbard TF, McManus BM. Fatal vasculitis (periarteritis nodosa) of the coronary arteries: angiographic ambiguities and absence of aneurysms at autopsy. J Am Coll Cardiol 1985;6:707–714.

    PubMed  CAS  Google Scholar 

  6. Rallings P, Exner T, Abraham R. Coronary artery vasculitis and myocardial infarction associated with antiphospholipid antibodies in a pregnant woman. Aust NZ J Med 1989;19:347–350.

    CAS  Google Scholar 

  7. Wilson VE, Eck SL, Bates ER. Evaluation and treatment of acute myocardial infarction complicating systemic lupus erythematosus. Chest 1992;101:420–424.

    PubMed  CAS  Google Scholar 

  8. Bulkley BH, Roberts WC. The heart in systemic lupus erythematosus and changes induced in it by corticosteroid therapy. Am J Med 1975;58:243–263.

    PubMed  CAS  Google Scholar 

  9. Haider YS, Roberts WC. Coronary arterial disease in systemic lupus erythematosus: quantification of degrees of narrowing in 22 necropsy patients (21 women) aged 16–37. Am J Med 1981;70:775–778.

    PubMed  CAS  Google Scholar 

  10. Vasquez JJ, San Martin P, Barbado FJ, Geurra GJ, Garcia Puig AJ, Mejias FS. Angiographic findings in systemic vasculitis. Angiology 1981;11:773–779.

    Google Scholar 

  11. Diaz-Rivera RS, Miller AJ. Periarteritis nodosa: a clinicopathological analysis of seven cases. Ann Intern Med 1946:24:420–443.

    Google Scholar 

  12. Strauer BE. The significance of coronary reserve in clinical heart disease. J Am Coll Cardiol 1990;15:775–783.

    PubMed  CAS  Google Scholar 

  13. Nitenberg A, Foult JM, Kahan A, et al. Reduced coronary flow and resistance reserve in primary scleroderma myocardial disease. Am Heart J 1986;112:309–315.

    PubMed  CAS  Google Scholar 

  14. Suzuki A, Kamiya T, Ono Y, Kinoshita Y, Kawamura S, Kimura K. Clinical significance of morphologic classification of coronary arterial segmental stenosis due to Kawasaki disease. Am J Cardiol 1993;71:1169–1173.

    PubMed  CAS  Google Scholar 

  15. Porter GF, Gentles TL. Images in clinical medicine. Giant coronary-artery aneurysm in Kawasaki’s disease. N Engl J Med 2001;12(345):98.

    Google Scholar 

  16. Kato H, Ichinose E, Yoshioka F, et al. Fate of coronary aneurysms in Kawasaki disease: serial coronary angiography and long-term follow-up study. Am J Cardiol 1982;49:1758–1766.

    PubMed  CAS  Google Scholar 

  17. Takahashi M, Mason W, Lewis AB. Regression of coronary aneurysms in patients with Kawasaki syndrome. Circulation 1987;75:387–394.

    PubMed  CAS  Google Scholar 

  18. Suzuki A, Kamiya T, Kuwahara N, et al. Coronary arterial lesions of Kawasaki disease: cardiac catheterization findings of 1100 cases. Pediatr Cardiol 1986;7:3–9.

    PubMed  CAS  Google Scholar 

  19. Kato H, Inoue O, Kawasaki T, Fujiwara, Watanabe T, Toshima H. Adult coronary artery disease probably due to childhood Kawasaki disease. Lancet 1992;340:1127–1129.

    PubMed  CAS  Google Scholar 

  20. Kuribayashi S, Ootaki M, Tsuji M, Matsuyama S, Iwasaki H, Oota T. Coronary angiographic abnormalities in mucocutaneous lymph node syndrome: acute findings and long-term followup. Radiology 1989;172:629–633.

    PubMed  CAS  Google Scholar 

  21. Hunsaker DM, Hunsaker JC 3rd, Adams KC, Noonan JA, Ackermann DM. Fatal Kawasaki disease due to coronary aneurysm rupture with massive cardiac tamponade. J Ky Med Assoc 2003;101:233–238.

    PubMed  Google Scholar 

  22. Furuyama H, Odagawa Y, Katoh C, et al. Altered myocardial flow reserve and endothelial function late after Kawasaki disease. J Pediatr 2003;142:149–154.

    PubMed  Google Scholar 

Coronary Aneurysm

  1. Tunick PA, Slater J, Kronzon I, Glassman E. Discrete atherosclerotic coronary artery aneurysms: a study of 20 patients. J Am Coll Cardiol 1990;15:279–282.

    PubMed  CAS  Google Scholar 

  2. Myler RK, Schechtmann NS, Rosenblum J, et al. Multiple coronary artery aneurysms in an adult associated with extensive thrombus formation resulting in acute myocardia infarction: successful treatment with intracoronary urokinase, intravenous heparin, and oral anticoagulation. Cathet Cardiovasc Diagn 1991;24:51–54.

    PubMed  CAS  Google Scholar 

  3. Rath S, Har-Zahav Y, Battler A, et al. Fate of nonobstructive aneurysmatic coronary artery disease: Angiographic and clinical follow-up report. Am Heart J 1985;109:785–791.

    PubMed  CAS  Google Scholar 

  4. Koh HK, Yoo DH, Yoo TS, et al. Coexistence of coronary aneurysms and total occlusion of the coronary arteries in systemic lupus erythematosus. Clin Exp Rheum 1998;16:739–742.

    CAS  Google Scholar 

  5. Oe H, Ehara S, Yoshikawa J. Crab claw-like appearance on coronary angiography. Heart 2005;91:437.

    PubMed  CAS  Google Scholar 

  6. Lipton MJ, Pfeifer JF, Lopes MG, Hultgren HN. Aneurysms of the coronary arteries in the adult: clinical and angiographic features. Radiology 1975;117:11–18.

    PubMed  CAS  Google Scholar 

  7. Eriksen UH, Aunsholt NA, Nielsen TT. Enormous right coronary arterial aneurysm in a patient with type IV Ehlers-Danlos syndrome. Int J Cardiol 1992;35:259–261.

    PubMed  CAS  Google Scholar 

  8. Cohen AJ, Banks A, Cambier P, Edwards FH. Post-atherectomy coronary artery aneurysm. Ann Thorac Surg 1992;54:1216–1218.

    PubMed  CAS  Google Scholar 

  9. Nakamura F, Kvasnicka J, Decoster HL, Geschwind HJ. Aneurysmal formation after successful pulsed laser coronary angioplasty. Cathet Cardiovasc Diagn 1992;27:125–129.

    PubMed  CAS  Google Scholar 

  10. Rab ST, King III SB, Roubin GS, Carlin S, Hearn JA, Douglas JS. Coronary aneurysms after stent placement: a suggestion of altered vessel wall healing in the presence of anti-inflammatory agents. J Am Coll Cardiol 1991;18:1524–1528.

    PubMed  CAS  Google Scholar 

  11. deHaan HPJ, Huysmans HA, Weeda HWH, Bosker HA, Buis B. Anastomotic pseudoaneurysm after aorto-coronary bypass grafting. Thorac Cardiovasc Surgeon 1985;33:55–56.

    CAS  Google Scholar 

  12. Saito S, Arai H, Kim K, Aoki N. Pseudoaneurysm of coronary artery following rupture of coronary artery during coronary angioplasty. Cathet Cardiovasc Diagn 1992;26:304–307.

    PubMed  CAS  Google Scholar 

  13. Vik-Mo H, Wiseth R, Hegbom K. Coronary aneurysm after implantation of a paclitaxel-eluting stent. Scand Cardiovasc J 2004;38:349–352.

    PubMed  Google Scholar 

Embolization

  1. Walley VM, Giannoccaro P, Beanlands DS, Keon WJ. Death at cardiac catheterization: coronary artery embolization of calcium debris from Ionescu-Shiley bioprosthesis. Cathet Cardiovasc Diagn 1990;21:92–94.

    PubMed  CAS  Google Scholar 

  2. Johnson D, Gonzalez-Lavin L. Myocardial infarction secondary to calcific embolization: an unusual complication of bioprosthetic valve degeneration. Ann Thorac Surg 1986;42:102–103.

    PubMed  CAS  Google Scholar 

  3. Taniike M, Nishino M, Egami Y, et al. Acute myocardial infarction caused by a septic coronary embolism diagnosed and treated with a thrombectomy catheter. Heart 2005;91(5):e34.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wilson, R.F., White, C.W. (2007). Coronary Angiography. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_35

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics