Skip to main content

A Yeast-Based Recombination Assay for Homing Endonuclease Activity

  • Protocol
  • First Online:
Homing Endonucleases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1123))

  • 1382 Accesses

Abstract

Homing endonucleases (HEs) are natural enzymes that cleave long DNA target with a high specificity and trigger homologous recombination at the exact site of the break. Such mechanisms can thus be used for all the applications covered today by the generic name of “genome engineering”: targeted sequence insertion, removal, or editing. However, before being able to address those applications, the engineering of HEs must be mastered so that any potential target would be efficiently and specifically recognized and cleaved. Working on the I-CreI model, we have developed a very powerful platform to generate HEs with new tailored specificity. We have put in place the first in vivo, functional, high throughput assay to generate I-CreI variants and measure their activity. We use semi-rational design combined with proprietary in silico predictions to design and synthesize I-CreI mutants that are tested for their capacity to induce homologous recombination in a yeast cell. The process has been standardized and robotized so that we can generate thousands of I-CreI derivatives, characterize their cleavage profile, and deliver them for further applications in the research, therapeutic, or agrobusiness fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schleifman EB, Chin JY, Glazer PM (2008) Triplex-mediated gene modification. Methods Mol Biol 435:175–190

    Article  CAS  PubMed  Google Scholar 

  2. Ramirez CL, Joung JK (2013) Engineering zinc finger nucleases for targeted genome editing. Top Curr Genet 23:121–146

    Article  CAS  Google Scholar 

  3. Epinat JC, Silva G, Paques F, Smith J, Duchateau P (2013) Engineering meganucleases for genome engineering purposes. Top Curr Genet 23:147–185

    Article  CAS  Google Scholar 

  4. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  Google Scholar 

  5. Hafez M, Hausner G (2012) Homing endonucleases: DNA scissors on a mission. Genome 55:553–569

    Article  CAS  PubMed  Google Scholar 

  6. Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–394

    Article  CAS  PubMed  Google Scholar 

  7. Kostriken R, Strathern JN, Klar AJ, Hicks JB, Heffron F (1983) A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell 35:167–174

    Article  CAS  PubMed  Google Scholar 

  8. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Prieto J, Molina R, Montoya G (2012) Molecular scissors for in situ cellular repair. Crit Rev Biochem Mol Biol 47:207–221

    Article  CAS  PubMed  Google Scholar 

  10. Taylor GK, Stoddard BL (2012) Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms. Nucleic Acids Res 40:5189–5200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Belfort M, Perlman PS (1995) Mechanisms of intron mobility. J Biol Chem 270:30237–30240

    Article  CAS  PubMed  Google Scholar 

  12. Belfort M, Roberts RJ (1997) Homing endonucleases: keeping the house in order. Nucleic Acids Res 25:3379–3388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dujon B, Belfort M, Butow RA et al (1989) Mobile introns: definition of terms and recommended nomenclature. Gene 82:115–118

    Article  CAS  PubMed  Google Scholar 

  15. Arnould S, Delenda C, Grizot S et al (2011) The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 24:27–31

    Article  CAS  PubMed  Google Scholar 

  16. Delenda C, Paris S, Arnould S, Balbirnie E, Cabaniols JP (2013) Bio-applications derived from site-directed genome modification technologies. Top Curr Genet 23:353–384

    Article  CAS  Google Scholar 

  17. Silva G, Poirot L, Galetto R et al (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7:49–66

    Article  CAS  PubMed  Google Scholar 

  19. Pessach IM, Notarangelo LD (2011) Gene therapy for primary immunodeficiencies: looking ahead, toward gene correction. J Allergy Clin Immunol 127:1344–1350

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gimble FS, Moure CM, Posey KL (2003) Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. J Mol Biol 334:993–1008

    Article  CAS  PubMed  Google Scholar 

  21. Molina R, Redondo P, Stella S et al (2012) Non-specific protein-DNA interactions control I-CreI target binding and cleavage. Nucleic Acids Res 40:6936–6945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Doyon JB, Pattanayak V, Meyer CB, Liu DR (2006) Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 128:2477–2484

    Article  CAS  PubMed  Google Scholar 

  23. Rosen LE, Morrison HA, Masri S et al (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34:4791–47800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Seligman LM, Chisholm KM, Chevalier BS et al (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30:3870–3879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sussman D, Chadsey M, Fauce S et al (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342:31–41

    Article  CAS  PubMed  Google Scholar 

  26. Chames P, Epinat JC, Guillier S, Patin A, Lacroix E, Paques F (2005) In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 33:e178

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gruen M, Chang K, Serbanescu I, Liu DR (2002) An in vivo selection system for homing endonuclease activity. Nucleic Acids Res 30:e29

    Article  PubMed Central  PubMed  Google Scholar 

  28. Chen Z, Zhao H (2005) A highly sensitive selection method for directed evolution of homing endonucleases. Nucleic Acids Res 33:e154

    Article  PubMed Central  PubMed  Google Scholar 

  29. Chen Z, Wen F, Sun N, Zhao H (2009) Directed evolution of homing endonuclease I-SceI with altered sequence specificity. Protein Eng Des Sel 22:249–256

    Article  CAS  PubMed  Google Scholar 

  30. Takeuchi R, Certo M, Caprara MG, Scharenberg AM, Stoddard BL (2009) Optimization of in vivo activity of a bifunctional homing endonuclease and maturase reverses evolutionary degradation. Nucleic Acids Res 37:877–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Prieto J, Epinat JC, Redondo P et al (2008) Generation and analysis of mesophilic variants of the thermostable archaeal I-DmoI homing endonuclease. J Biol Chem 283:4364–4374

    Article  CAS  PubMed  Google Scholar 

  32. Volna P, Jarjour J, Baxter S et al (2007) Flow cytometric analysis of DNA binding and cleavage by cell surface-displayed homing endonucleases. Nucleic Acids Res 35:2748–2758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Jarjour J, West-Foyle H, Certo MT et al (2009) High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic Acids Res 37:6871–6880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Guthrie C, Fink R (1991) Guide to yeast genetics and molecular and cell biology. Methods Enzymol 194:3–933

    Article  Google Scholar 

  36. Arnould S, Chames P, Perez C et al (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355:443–458

    Article  CAS  PubMed  Google Scholar 

  37. Arnould S, Perez C, Cabaniols JP et al (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65

    Article  CAS  PubMed  Google Scholar 

  38. Grizot S, Duclert A, Thomas S, Duchateau P, Paques F (2011) Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease. Nucleic Acids Res 39:6124–6136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Grizot S, Epinat JC, Thomas S et al (2009) Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res 38:2006–2018

    Article  PubMed Central  PubMed  Google Scholar 

  40. Grizot S, Smith J, Daboussi F et al (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res 37:5405–5419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Smith J, Grizot S, Arnould S et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149

    Article  PubMed Central  PubMed  Google Scholar 

  42. Epinat JC, Arnould S, Chames P et al (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bhargava VO, Rahman S, Newton DW (1989) Stability of galactose in aqueous solutions. Am J Hosp Pharm 46:104–108

    CAS  PubMed  Google Scholar 

  44. Clayton RA, White O, Ketchum KA, Venter JC (1997) The first genome from the third domain of life. Nature 387:459–462

    Article  CAS  PubMed  Google Scholar 

  45. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  46. Legrain P, Dokhelar MC, Transy C (1994) Detection of protein–protein interactions using different vectors in the two-hybrid system. Nucleic Acids Res 22:3241–3242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Scott A, Timson DJ (2007) Characterization of the Saccharomyces cerevisiae galactose mutarotase/UDP-galactose 4-epimerase protein, Gal10p. FEMS Yeast Res 7:366–371

    Article  CAS  PubMed  Google Scholar 

  48. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

  49. Ilouga PE, Hesterkamp T (2012) On the prediction of statistical parameters in high-throughput screening using resampling techniques. J Biomol Screen 17:705–712

    Article  CAS  PubMed  Google Scholar 

  50. Brideau C, Gunter B, Pikounis B, Liaw A (2003) Improved statistical methods for hit selection in high-throughput screening. J Biomol Screen 8:634–647

    Article  PubMed  Google Scholar 

  51. Gunter B, Brideau C, Pikounis B, Liaw A (2003) Statistical and graphical methods for quality control determination of high-throughput screening data. J Biomol Screen 8:624–633

    Article  PubMed  Google Scholar 

  52. Sui Y, Wu Z (2007) Alternative statistical parameter for high-throughput screening assay quality assessment. J Biomol Screen 12:229–234

    Article  PubMed  Google Scholar 

  53. Daboussi F, Zaslavskiy M, Poirot L et al (2012) Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases. Nucleic Acids Res 40:6367–6379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Epinat, JC. (2014). A Yeast-Based Recombination Assay for Homing Endonuclease Activity. In: Edgell, D. (eds) Homing Endonucleases. Methods in Molecular Biology, vol 1123. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-968-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-968-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-967-3

  • Online ISBN: 978-1-62703-968-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics