Skip to main content

Ecophysiological Process-Based Model to Simulate Carbon Fluxes in Plants

  • Protocol
  • First Online:
Plant Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1090))

Abstract

Carbon fluxes in plants have been subject to many modeling studies. The conceptual framework of models of carbon acquisition, allocation, and metabolism in plants are first introduced, together with methods to calibrate and evaluate the validity of the resulting models. The possibility to combine different models within an integrated plant–organ system is illustrated. In the last part of the chapter, methods used to measure the carbon flows at the plant scale are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farquhar G, Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 90:78–90

    Article  Google Scholar 

  2. Hikosaka K (1997) Modelling optimal temperature acclimation of the photosynthetic apparatus in C3 plants with respect to nitrogen use. Ann Bot 80:721–730

    Article  CAS  Google Scholar 

  3. Medlyn BE, Dreyer E, Ellsworth D et al (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    Article  CAS  Google Scholar 

  4. Diaz-Pérez JC, Shackel KA, Sutter EG (1995) Relative water content and water potential of tissue-cultured apple shoots under water deficits. J Exp Bot 46:111–118

    Article  Google Scholar 

  5. Hikosaka K, Ishikawa K, Borjigidai A et al (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    Article  PubMed  CAS  Google Scholar 

  6. Ball J, Woodrow I, Berry J (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp 221–224

    Chapter  Google Scholar 

  7. Collatz GJ, Ball JT, Grivet C et al (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric Forest Meteorol 54:107–136

    Article  Google Scholar 

  8. Sellers PJ, Berry JA, Collatz GJ et al (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Rem Sens Environ 42:187–216

    Article  Google Scholar 

  9. Leuning R, Kelliher FM, Pury DGG et al (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ 18:1183–1200

    Article  Google Scholar 

  10. Wang Y-P, Leuning R (1998) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I. Agric Forest Meteorol 91:89–111

    Article  Google Scholar 

  11. Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ 26:1097–1116

    Article  Google Scholar 

  12. Yin X, Struik PC (2009) C3 and C4 photosynthesis models: an overview from the perspective of crop modelling. NJAS - Wagn J Life Sci 57:27–38

    Article  Google Scholar 

  13. Jarvis P (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B Biol Sci 273:593

    Article  CAS  Google Scholar 

  14. Massman WJ, Kaufmann MR (1991) Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains. Agric Forest Meteorol 54:155–167

    Article  Google Scholar 

  15. Bosveld F, Bouten W (2001) Evaluation of transpiration models with observations over a Douglas-fir forest. Agric Forest Meteorol 108:247–264

    Article  Google Scholar 

  16. Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154

    Article  CAS  Google Scholar 

  17. Pury DD, Farquhar G (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  18. Greer DH, Seleznyova AN, Green SR (2004) From controlled environments to field simulations: leaf area dynamics and photosynthesis of kiwifruit vines (Actinidia deliciosa). Func Plant Biol 31:169

    Article  Google Scholar 

  19. Dai Y, Dickinson RE, Wang Y-P (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Climate 17:2281–2299

    Article  Google Scholar 

  20. Génard M, Dauzat J, Franck N et al (2007) Carbon allocation in fruit trees: from theory to modelling. Trees 22:269–282

    Article  Google Scholar 

  21. Shinozaki K, Yoda K, Hozumi K et al (1964) A quantitative analysis of plant form. The pipe model theory. II. further evidence of the theory and its application in forest ecology. Jpn J Ecol 14:133–139

    Google Scholar 

  22. Davidson RL (1969) Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann Bot 25:59–104

    Google Scholar 

  23. Sievanen R, Nikinmaa E, Nygren P et al (2000) Components of functional-structural tree models. Annu Forest Sci 57:399–412

    Article  Google Scholar 

  24. Lacointe A (2000) Carbon allocation among tree organs: a review of basic processes and representation in functional-structural tree models. Annu Forest Sci 57:521–533

    Article  Google Scholar 

  25. Grossman YL, Dejong TM (1994) Peach - a simulation-model of reproductive and vegetative growth in peach-trees. Tree Physiol 14:329–345

    Article  PubMed  Google Scholar 

  26. Lescourret F, Ben-Mimoun M, Génard M (1998) A simulation model of growth at the shoot-bearing fruit level. I. Description and parameterization for peach. Eur J Agron 9:173–188

    Article  Google Scholar 

  27. Fishman S, Génard M (1998) A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass. Plant Cell Environ 21:739–752

    Article  Google Scholar 

  28. Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: representation and realism. Ann Bot 85:54–55

    Article  Google Scholar 

  29. Thornley JHM, Johnson IR (1990) Plant and crop modelling. Oxford University Press, Oxford

    Google Scholar 

  30. Penning de Vries FWT, van Laar HH (1982) Simulation of plant growth and crop production. Pudoc, Wageningen, The Netherlands

    Google Scholar 

  31. Génard M, Lescourret F, Gomez L et al (2003) Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica). Tree Physiol 23:373–385

    Article  PubMed  Google Scholar 

  32. Chang R (2000) Physical chemistry for the chemical and biological sciences. University Science, Sausalito, CA

    Google Scholar 

  33. Génard M, Bertin N, Borel C et al (2007) Towards a virtual fruit focusing on quality: modelling features and potential uses. J Exp Bot 58:917–928

    Article  PubMed  Google Scholar 

  34. Ellison AM (2004) Bayesian inference in ecology. Ecol Lett 7:509–520

    Article  Google Scholar 

  35. Vetterling WT, Teukolsky SA, Flannery BP et al (1992) Numerical recipes in C. The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  36. Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Gen Res 13:2467–2474

    Article  CAS  Google Scholar 

  37. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trend Ecol Evol 19:101–108

    Article  Google Scholar 

  38. Cariboni J, Gatelli D, Liska R et al (2007) The role of sensitivity analysis in ecological modelling. Ecol Model 203:167–182

    Article  Google Scholar 

  39. Saltelli A, Ratto M, Tarantola S et al (2005) Sensitivity analysis for chemical models. Chem Rev 105:2811–2828

    Article  PubMed  CAS  Google Scholar 

  40. Baker R (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Physiol Plant Mol Biol 59:89–113

    Article  CAS  Google Scholar 

  41. Daudet F-A, Claustres J (1995) Continuous monitoring of gas exchange in open-top chambers in pollution experiments: methodological aspects. New Phytol 130:81–88

    Article  Google Scholar 

  42. Poni S, Magnanini E, Rebucci B (1997) An automated chamber system for measurements of whole-vine gas exchange. Hort Sci 32:64–67

    Google Scholar 

  43. Lang A, Thorpe MR (1989) Xylem, phloem and transpiration flows in a grape: application of a technique for measuring the volume of attached fruits to high resolution using Archimedes’ principle. J Exp Bot 40:1069–1078

    Article  Google Scholar 

  44. Fishman S, Génard M, Huguet JG (2001) Theoretical analysis of systematic errors introduced by a pedicel-girdling technique used to estimate separately the xylem and phloem flows. J Theor Biol 213:435–446

    Article  PubMed  CAS  Google Scholar 

  45. King RW, Zeevaart JAD (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53:96–103

    Article  PubMed  CAS  Google Scholar 

  46. Araki T, Kitano M, Eguchi H (1997) Evaluation of photoassimilate flux through a tomato pedicel. Biotronics 26:21–29

    Google Scholar 

  47. Girousse C, Faucher M, Kleinpeter C et al (2003) Dissection of the effects of the aphid Acyrthosiphon pisum feeding on assimilate partitioning in Medicago sativa. New Phytol 157:83–92

    Article  Google Scholar 

  48. Lohaus G, Moellers C (2000) Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content. Planta 211:833–840

    Article  PubMed  CAS  Google Scholar 

  49. Minchin PEH, Troughton JH (1980) Quantitative interpretation of phloem translocation data. Annu Rev Plant Physiol Plant Mol Biol 31:191–215

    Article  Google Scholar 

  50. Van As H (2007) Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long distance water transport. J Exp Bot 58:743–756

    PubMed  Google Scholar 

  51. Scheenen T (2000) Quantification of water transport in plants with NMR imaging. J Exp Bot 51:1751–1759

    Article  PubMed  CAS  Google Scholar 

  52. Köckenberger W, Pope JM, Xia Y et al (1997) A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta 201:53–63

    Article  Google Scholar 

  53. Windt C, Vergeldt F (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29:1715–1729

    Article  PubMed  CAS  Google Scholar 

  54. Peuke AD, Rokitta M, Zimmermann U et al (2001) Simultaneous measurement of water flow velocity and solute transport in xylem and phloem of adult plants of Ricinus communis over a daily time course by nuclear magnetic resonance spectrometry. Plant Cell Environ 24:491–503

    Article  CAS  Google Scholar 

  55. Peuke AD, Windt C, Van As H (2006) Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited? Plant Cell Environ 29:15–25

    Article  PubMed  Google Scholar 

  56. Windt CW, Gerkema E, Van As H (2009) Most water in the tomato truss is imported through the xylem, not the phloem: a nuclear magnetic resonance flow imaging study. Plant Physiol 151:830–842

    Article  PubMed  CAS  Google Scholar 

  57. Mirás-Avalos JM, Egea G, Nicolás E et al (2011) QualiTree, a virtual fruit tree to study the management of fruit quality. II. Parameterisation for peach, analysis of growth-related processes and agronomic scenarios. Trees 25:785–799

    Article  Google Scholar 

  58. Lescourret F, Moitrier N, Valsesia P et al (2010) QualiTree, a virtual fruit tree to study the management of fruit quality. I. Model development. Trees 25:519–530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Baldazzi, V., Bertin, N., Gautier, H., Génard, M. (2014). Ecophysiological Process-Based Model to Simulate Carbon Fluxes in Plants. In: Dieuaide-Noubhani, M., Alonso, A. (eds) Plant Metabolic Flux Analysis. Methods in Molecular Biology, vol 1090. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-688-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-688-7_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-687-0

  • Online ISBN: 978-1-62703-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics