Skip to main content

CGH Protocols: Chronic Lymphocytic Leukemia

  • Protocol
  • First Online:
Array Comparative Genomic Hybridization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 973))

Abstract

Array-based comparative genomic hybridization (aCGH) is a powerful assay to identify copy number abnormalities underlying the pathogenesis of cancer. aCGH has become the gold standard for whole genome copy number analysis in medium and large cohorts in clinical and research laboratories. Identifying the best workflow is critical to achieving the optimal performance for this assay. Here we describe the aCGH protocol used by our group in the study of B-chronic lymphocytic leukemia (CLL). We also describe some initial applications of aCGH in association with clinical outcome for CLL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    Article  PubMed  CAS  Google Scholar 

  2. Mccarroll SA, Kuruvilla FG, Korn JM et al (2008) Integrated detection and population-genetic analysis of snps and copy number variation. Nat Genet 40(10):1166–1174

    Article  PubMed  CAS  Google Scholar 

  3. Lee JA, Lupski JR (2006) Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 52(1):103–121

    Article  PubMed  CAS  Google Scholar 

  4. Veltman JA, Jonkers Y, Nuijten I et al (2003) Definition of a critical region on chromosome 18 for congenital aural atresia by arraycgh. Am J Hum Genet 72(6):1578–1584

    Article  PubMed  CAS  Google Scholar 

  5. Braggio E, Keats JJ, Leleu X et al (2009) Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappab signaling pathways in waldenstrom’s macroglobulinemia. Cancer Res 69(8):3579–3588

    Article  PubMed  CAS  Google Scholar 

  6. Keats JJ, Fonseca R, Chesi M et al (2007) Promiscuous mutations activate the noncanonical nf-kappab pathway in multiple myeloma. Cancer Cell 12(2):131–144

    Article  PubMed  CAS  Google Scholar 

  7. Mao X, Orchard G, Lillington DM et al (2003) Amplification and overexpression of junb is associated with primary cutaneous t-cell lymphomas. Blood 101(4):1513–1519

    Article  PubMed  CAS  Google Scholar 

  8. Mullighan CG, Goorha S, Radtke I et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764

    Article  PubMed  CAS  Google Scholar 

  9. Clark J, Edwards S, Feber A et al (2003) Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cdna microarrays. Oncogene 22(8):1247–1252

    Article  PubMed  CAS  Google Scholar 

  10. Martinez-Climent JA, Alizadeh AA, Segraves R et al (2003) Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood 101(8):3109–3117

    Article  PubMed  CAS  Google Scholar 

  11. Pollack JR, Sorlie T, Perou CM et al (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 99(20):12963–12968

    Article  PubMed  CAS  Google Scholar 

  12. Edwards JH, Harnden DG, Cameron AH et al (1960) A new trisomic syndrome. Lancet 1(7128):787–790

    Article  PubMed  CAS  Google Scholar 

  13. Lejeune J, Turpin R, Gautier M (1959) Mongolism; a chromosomal disease (trisomy). Bull Acad Natl Med 143(11–12):256–265

    PubMed  CAS  Google Scholar 

  14. Weiss LA, Shen Y, Korn JM et al (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358(7):667–675

    Article  PubMed  CAS  Google Scholar 

  15. Pollack JR, Perou CM, Alizadeh AA et al (1999) Genome-wide analysis of DNA copy-number changes using cdna microarrays. Nat Genet 23(1):41–46

    Article  PubMed  CAS  Google Scholar 

  16. Albertson DG, Pinkel D (2003) Genomic mic­roarrays in human genetic disease and ­cancer. Hum Mol Genet 12 Spec No 2:R145–R152

    Google Scholar 

  17. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  18. Stilgenbauer S, Bullinger L, Lichter P et al (2002) Genetics of chronic lymphocytic leukemia: genomic aberrations and v(h) gene mutation status in pathogenesis and clinical course. Leukemia 16(6):993–1007. doi:10.1038/sj.leu.2402537

    Article  PubMed  CAS  Google Scholar 

  19. Dohner H, Stilgenbauer S, Benner A et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343(26):1910–1916. doi:MJBA-432602 [pii] 10.1056/NEJM200012283432602

    Article  PubMed  CAS  Google Scholar 

  20. Kay NE, Eckel-Passow JE, Braggio E et al (2011) Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genet Cytogenet 203(2):161–168. doi:S0165-4608(10)00492-9 [pii] 10.1016/j.cancergencyto.2010.09.003

    Article  Google Scholar 

  21. Ouillette P, Collins R, Shakhan S et al (2011) Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood 118(11):3051–3061. doi:blood-2010-12-327858 [pii] 10.1182/blood-2010-12-327858

    Article  PubMed  CAS  Google Scholar 

  22. Braggio E, Kay NE, Vanwier S, Tschumper RC, Smoley S, Eckel-Passow JE, et al (2012) Longitudinal genome-wide analysis of patients with chronic lymphocytic leukemia reveals complex evolution of clonal architecture at disease progression and at the time of relapse. Leukemia 26(7):1698–1701blood-2010-12-327858 [pii] 10.1182/blood-2010-12-327858

    Article  PubMed  CAS  Google Scholar 

  23. Knight SJ, Yau C, Clifford R, Timbs AT, Sadighi Akha E, Dréau HM, Burns A, Ciria C, Oscier DG, Pettitt AR, Dutton S, Holmes CC, Taylor J, Cazier JB, Schuh A (2012) Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic ­lymphocytic leukemia. Leukemia 26(7):1564–1575

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Braggio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Braggio, E., Fonseca, R., Kay, N.E. (2013). CGH Protocols: Chronic Lymphocytic Leukemia. In: Banerjee, D., Shah, S. (eds) Array Comparative Genomic Hybridization. Methods in Molecular Biology, vol 973. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-281-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-281-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-280-3

  • Online ISBN: 978-1-62703-281-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics