Skip to main content

Assessing Transmission Blockade in Plasmodium spp.

  • Protocol
  • First Online:
Malaria

Abstract

Here we describe a series of methods that can be used to assess the activities of “vaccines,” drugs, and genetically modified vectors, for their abilities to inhibit transmission of Plasmodium from its vertebrate to its mosquito hosts. The selection of method to be used is determined by the purpose of the experiment, which can include the determination of the site/time of activity, and/or the potential reduction in transmission achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinden RE (2010) A biologist’s perspective on malaria vaccine development. Hum Vaccin 6:3–11

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg R (2008) Malaria: some considerations regarding parasite productivity. Trends Parasitol 24:487–491

    Article  PubMed  Google Scholar 

  3. Butcher GA (1997) Antimalarial drugs and the mosquito transmission of Plasmodium. Int J Parasitol 27:975–987

    Article  PubMed  CAS  Google Scholar 

  4. Sauerwein RW (2007) Malaria transmission-blocking vaccines: the bonus of effective malaria control. Microbes Infect 9:792–795

    Article  PubMed  CAS  Google Scholar 

  5. Carter R (2001) Transmission blocking malaria vaccines. Vaccine 19:2309–2314

    Article  PubMed  CAS  Google Scholar 

  6. Malkin EM et al (2005) Phase I clinical trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23:3131–3138

    Article  PubMed  CAS  Google Scholar 

  7. Stowers A, Carter R (2001) Current developments in malaria transmission-blocking vaccines. Expert Opin Biol Ther 1:619–628

    Article  PubMed  CAS  Google Scholar 

  8. Wu Y et al (2008) Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS One 3:e2636

    Article  PubMed  Google Scholar 

  9. LeBlanc R et al (2008) Markedly enhanced immunogenicity of a Pfs25 DNA-based malaria transmission-blocking vaccine by in vivo electroporation. Vaccine 26:185–192

    Article  PubMed  CAS  Google Scholar 

  10. Lobo CA et al (1999) Immunization of mice with DNA-based Pfs25 elicits potent malaria transmission-blocking antibodies. Infect Immun 67:1688–1693

    PubMed  CAS  Google Scholar 

  11. Blagborough AM et al (2010) Intranasal and intramuscular immunization with Baculovirus Dual Expression System-based Pvs25 vaccine substantially blocks Plasmodium vivax ­transmission. Vaccine 28:6014–6020

    Article  PubMed  CAS  Google Scholar 

  12. Miyata T et al (2011) Adenovirus-vectored Plasmodium vivax ookinete surface protein, Pvs25, as a potential transmission-blocking vaccine. Vaccine 29:2720–2726

    Article  PubMed  CAS  Google Scholar 

  13. Franke-Fayard B et al (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137:23–33

    Article  PubMed  CAS  Google Scholar 

  14. Janse CJ et al (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145:60–70

    Article  PubMed  CAS  Google Scholar 

  15. Ramjanee S et al (2007) The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials. Vaccine 25:886–894

    Article  PubMed  CAS  Google Scholar 

  16. Mlambo G et al (2008) Murine model for assessment of Plasmodium falciparum transmission-blocking vaccine using transgenic Plasmodium berghei parasites expressing the target antigen Pfs25. Infect Immun 76:2018–2024

    Article  PubMed  CAS  Google Scholar 

  17. Delves MJ, Sinden RE (2010) A semi-automated method for counting fluorescent malaria oocysts increases the throughput of transmission blocking studies. Malar J 29:9–35

    Google Scholar 

  18. Sinden RE et al (2007) Progression of Plasmodium berghei through Anopheles stephensi is density-dependent. PLoS Pathog 3:e195

    Article  PubMed  Google Scholar 

  19. Vaid A, Sharma P (2006) PfPKB, a protein kinase B-like enzyme from Plasmodium falciparum: II. Identification of calcium/calmodulin as its upstream activator and dissection of a novel signalling pathway. J Biol Chem 281:27126–27133

    Article  PubMed  CAS  Google Scholar 

  20. Winger LA et al (1988) Ookinete antigens of Plasmodium berghei. Appearance on the zygote surface of an Mr 21 kDa determinant identified by transmission-blocking monoclonal antibodies. Parasite Immunol 10:193–207

    Article  PubMed  CAS  Google Scholar 

  21. Ponnudurai T et al (1986) Synchronization of Plasmodium falciparum gametocytes using an automated suspension culture system. Parasitology 93:263–274

    Article  PubMed  Google Scholar 

  22. Graves PM et al (1984) Gametocyte production in cloned lines of Plasmodium falciparum. Am J Trop Med Hyg 33:1045–1050

    PubMed  CAS  Google Scholar 

  23. Ifediba T, Vanderburg JP (1981) Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature 294:364–366

    Article  PubMed  CAS  Google Scholar 

  24. Read M, Hyde JE (1993) Simple in vitro cultivation of the malaria parasite Plasmodium falciparum (erythrocytic stages) suitable for large-scale preparations. Methods Mol Biol 21:43–55

    PubMed  CAS  Google Scholar 

  25. Brown KN, Hills LA (1981) Erythrocyte destruction and protective immunity to malaria: enhancement of the immune response by phenylhydrazine treatment. Tropenmed Parasitol 32:67–72

    PubMed  CAS  Google Scholar 

  26. van den Berghe L (1954) The history of the discovery of Plasmodium berghei. Indian J Malariol 8:241–243

    Google Scholar 

  27. Vincke IH (1954) Natural history of Plasmodium berghei. Indian J Malariol 8:245–256

    PubMed  CAS  Google Scholar 

  28. Yoeli M (1965) Studies on Plasmodium berghei in nature and under experimental conditions. Trans R Soc Trop Med Hyg 59:255–276

    Article  PubMed  CAS  Google Scholar 

  29. Bray RS (1954) The mosquito transmission of Plasmodium berghei. Indian J Malariol 8:263–274

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Sinden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Blagborough, A.M., Delves, M.J., Ramakrishnan, C., Lal, K., Butcher, G., Sinden, R.E. (2012). Assessing Transmission Blockade in Plasmodium spp.. In: Ménard, R. (eds) Malaria. Methods in Molecular Biology, vol 923. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-026-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-026-7_40

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-025-0

  • Online ISBN: 978-1-62703-026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics