Skip to main content

On Setting Up and Assessing Docking Simulations for Virtual Screening

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 928))

Abstract

Small molecule docking and virtual screening of candidate compounds have become an integral part of drug discovery pipelines, complementing and streamlining experimental efforts in that regard. In this chapter, we describe specific software packages and protocols that can be used to efficiently set up a computational screening using a library of compounds and a docking program. We also discuss consensus- and clustering-based approaches that can be used to assess the results, and potentially re-rank the hits. While docking programs share many common features, they may require tailored implementation of virtual screening pipelines for specific computing platforms. Here, we primarily focus on solutions for several public domain packages that are widely used in the context of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034

    Article  PubMed  CAS  Google Scholar 

  2. Ripphausen P, Nisius B, Bajorath J (2011) State-of-the-art in ligand-based virtual screening. Drug Discov Today 16(9–10):372–376

    Article  PubMed  CAS  Google Scholar 

  3. Morris GM, Lim-Wilby M (2008) Molecular docking. Methods Mol Biol 443:365–382

    Article  PubMed  CAS  Google Scholar 

  4. Petrenko R, Meller J (2009) Molecular dynamics. In: Encyclopedia of life sciences. Wiley

    Google Scholar 

  5. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225–242

    Article  PubMed  CAS  Google Scholar 

  6. Rajamani R, Good AC (2007) Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development. Curr Opin Drug Discov Devel 10:308–315

    PubMed  CAS  Google Scholar 

  7. Duch W, Swaminathan K, Meller J (2007) Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des 13:1497–1508

    Article  PubMed  CAS  Google Scholar 

  8. Warren GL, Andrews CW, Capelli AM, Clarke B et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  PubMed  CAS  Google Scholar 

  9. Kolb P, Ferreira RS, Irwin JJ, Shoichet BK (2009) Docking and chemoinformatic screens for new ligands and targets. Curr Opin Biotechnol 20:429–436

    Article  PubMed  CAS  Google Scholar 

  10. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  PubMed  CAS  Google Scholar 

  11. Morris GM, Huey R, Lindstrom W, Sanner MF et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  PubMed  CAS  Google Scholar 

  12. Lang PT, Brozell SR, Mukherjee S, Pettersen EF et al (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15:1219–1230

    Article  PubMed  CAS  Google Scholar 

  13. Shoichet BK, Bodian DL, Kuntz ID (1992) Molecular Docking Using Shape Descriptors. J Comput Chem 13:380–397

    Article  CAS  Google Scholar 

  14. Meng EC, Shoichet BK, Kuntz ID (1992) Automated Docking with Grid-Based Energy Evaluation. J Comput Chem 13:505–524

    Article  CAS  Google Scholar 

  15. Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308:377–395

    Article  PubMed  CAS  Google Scholar 

  16. Friesner RA, Banks JL, Murphy RB, Halgren TA et al (2004) Glide: a new approach for rapid, accurate docking and scoring 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  PubMed  CAS  Google Scholar 

  17. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW et al (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  PubMed  CAS  Google Scholar 

  18. Davis IW, Baker D (2009) RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385:381–392

    Article  PubMed  CAS  Google Scholar 

  19. Zavodszky MI, Sanschagrin PC, Korde RS, Kuhn LA (2002) Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. J Comput Aided Mol Des 16: 883–902

    Article  PubMed  CAS  Google Scholar 

  20. Zavodszky MI, Rohatgi A, Van Voorst JR, Yan H et al (2009) Scoring ligand similarity in structure-based virtual screening. J Mol Recognit 22:280–292

    Article  PubMed  CAS  Google Scholar 

  21. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46: 499–511

    Article  PubMed  CAS  Google Scholar 

  22. Huang SY, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 66:399–421

    Article  PubMed  CAS  Google Scholar 

  23. Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics 24:8.14.1–8.14.40

    Google Scholar 

  24. Yang JM, Chen YF, Shen TW, Kristal BS et al (2005) Consensus scoring criteria for improving enrichment in virtual screening. J Chem Inf Model 45:1134–1146

    Article  PubMed  CAS  Google Scholar 

  25. Biesiada J, Porollo A, Velayutham P, Kouril M, Meller J (2011) Survey of public domain software for docking simulations and virtual screening. Hum Genomics 5(5):497–505

    PubMed  CAS  Google Scholar 

  26. Kirchmair J, Markt P, Distinto S, Wolber G et al (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection–what can we learn from earlier mistakes?, J Comput Aided Mol Des 22:213–228

    Article  PubMed  CAS  Google Scholar 

  27. Kim R, Skolnick J (2008) Assessment of programs for ligand binding affinity prediction. J Comput Chem 29:1316–1331

    Article  PubMed  CAS  Google Scholar 

  28. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    PubMed  CAS  Google Scholar 

  29. Khodade P, Prabhu R, Chandra N, Raha S et al (2007) Parallel implementation of AutoDock. J Appl Crystallogr 40:598–599

    Article  CAS  Google Scholar 

  30. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45: 177–182

    Article  PubMed  CAS  Google Scholar 

  31. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  32. DeLano WL http://www.pymol.org/

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38, 27–38

    Article  PubMed  CAS  Google Scholar 

  34. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  PubMed  CAS  Google Scholar 

  35. Seco J, Luque FJ, Barril X (2009) Binding site detection and druggability index from first principles. J Med Chem 52(8):2363–2371

    Article  PubMed  CAS  Google Scholar 

  36. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53(15):5858–5867

    Article  PubMed  CAS  Google Scholar 

  37. Cui Q, Bahar I (2006) Normal mode analysis: theory and applications to biological and chemical systems. Chapman & Hall, Boca Raton

    Google Scholar 

  38. Chennubhotla C, Rader AJ, Yang LW, Bahar I (2005) Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Phys Biol 2(4): S173–S180

    Article  PubMed  CAS  Google Scholar 

  39. Porollo A, Meller J (2007) Versatile annotation and publication quality visualization of protein complexes using POLYVIEW-3D. BMC Bioinformatics 8(316)

    Google Scholar 

  40. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302

    Article  PubMed  CAS  Google Scholar 

  41. Dundas J et al (2006) CASTp: computed atas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl Acids Res 34:W116–W118

    Article  PubMed  CAS  Google Scholar 

  42. Porollo A, Meller J (2007) Prediction-based fingerprints of protein-protein interactions. Proteins 66:630–645

    Article  PubMed  CAS  Google Scholar 

  43. Cerqueira NMFSA, Ribeiro J, Fernandes PA, Ramos MJ (2011) vsLab—An implementation for virtual high-throughput screening using AutoDock and VMD. Int J Quantum Chem 111:1208–1212

    Article  CAS  Google Scholar 

  44. Wolf LK (2009) New software and Websites for the Chemical Enterprise. Chem Eng News 87:31

    Google Scholar 

  45. Forli S Raccoon|AutoDock VS: an automated tool for preparing AutoDock virtual screenings. http://autodock.scripps.edu/resources/raccoon

  46. DockingServer. http://www.dockingserver.com/web

  47. Pettersen EF, Goddard TD, Huang CC, Couch GS et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  48. Porollo A, Meller J (2010) POLYVIEW-MM: web-based platform for animation and analysis of molecular simulations. Nucleic Acids Res 38(Suppl):W662–W666

    Article  PubMed  CAS  Google Scholar 

  49. Fang H, Tong W, Shi LM, Blair R et al (2001) Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol 14:280–294

    Article  PubMed  CAS  Google Scholar 

  50. Barrett I, Meegan MJ, Hughes RB, Carr M et al (2008) Synthesis, biological evaluation, structural-activity relationship, and docking study for a series of benzoxepin-derived estrogen receptor modulators. Bioorg Med Chem 16:9554–9573

    Article  PubMed  CAS  Google Scholar 

  51. AutoDock Software in Parallel with GPUs. http://gpuautodock.sourceforge.net/

  52. Lindahl E, Azuara C, Koehl P, Delarue M (2006) NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res 36:W52–W56

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants A1055649, UL1RR026314, and P01HD013021. Computational resources were made available by Cincinnati Childrens Hospital Research Foundation and University of Cincinnati College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Meller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Biesiada, J., Porollo, A., Meller, J. (2012). On Setting Up and Assessing Docking Simulations for Virtual Screening. In: Zheng, Y. (eds) Rational Drug Design. Methods in Molecular Biology, vol 928. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-008-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-008-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-007-6

  • Online ISBN: 978-1-62703-008-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics