Skip to main content

Ghrelin: Neuropeptide Regulator of Metabolism

  • Chapter
  • First Online:
Ghrelin in Health and Disease

Abstract

Ghrelin regulates hypothalamic circuits to increase food intake by modulating the activity of two neuronal populations in the arcuate nucleus of hypothalamus. Those neurons (NPY/AgRP and POMC) are considered “first-order” sensory neurons in the control of food intake. Ghrelin simultaneously stimulates orexigenic NPY/AgRP neuronal activity and suppresses POMC neuronal activity via inhibitory γ-aminobutyric acid (GABA)-eric inputs from active NPY/AgRP neurons. Recent data suggests that metabolic status regulates the function of ghrelin on energy homeostasis and neuronal function and it appears that ghrelin is not able to activate this neuronal circuit in diet-induced obese mice. Contrary to expectations from 10 years ago, ghrelin seems to be more important for the regulation of blood glucose levels during starvation than it is for acute regulation of food intake. This chapter establishes the hypothesis that ghrelin primarily functions during negative energy balance to promote survival. Consistent with this idea, during calorie restriction, ghrelin increases blood glucose and suppresses glucose-stimulated insulin secretion from the pancreas. This important adaptive mechanism prevents insulin-driven clearance of glucose from the blood during negative energy balance and thus maintains an immediate energy supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang J, Brown MS, Liang G, Grishin NV, Goldstein J. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132:387–96.

    PubMed  CAS  Google Scholar 

  2. Gutierrez JA, Solenberg PJ, Perkins DR, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci U S A. 2008;105:6320–5.

    PubMed  CAS  Google Scholar 

  3. Sakata I, Yang J, Lee CE, et al. Colocalization of ghrelin O-acyltransferase and ghrelin in gastric mucosal cells. Am J Physiol Endocrinol Metab. 2009;297:E134–41.

    PubMed  CAS  Google Scholar 

  4. Kirchner H, Gutierrez JA, Solenber PJ, et al. GOAT links dietary lipids with the endocrine control of energy balance. Nat Med. 2009;15:741–5.

    PubMed  CAS  Google Scholar 

  5. Zhu X, Cao Y, Voogd K, Steiner DF. On the processing of proghrelin to ghrelin. J Biol Chem. 2006;281:38867–70.

    PubMed  CAS  Google Scholar 

  6. Murakami N, Hayashida T, Kuroiwa T, et al. Role for central ghrelin in food intake and secretion profile of stomach ghrelin in rats. J Endocrinol. 2002;174:283–8.

    PubMed  CAS  Google Scholar 

  7. Hisadome K, Reimann F, Gribble FM, Trapp S. Leptin directly depolarizes preproglucagon neurons in the nucleus tractus solitarius: electrical properties of glucagon-like Peptide 1 neurons. Diabetes. 2010;59:1890–8.

    PubMed  CAS  Google Scholar 

  8. Williams KW, Zsombok A, Smith BN. Rapid inhibition of neurons in the dorsal motor nucleus of the vagus by leptin. Endocrinology. 2007;148:1868–81.

    PubMed  CAS  Google Scholar 

  9. Schwartz GJ, Moran TH. Leptin and neuropeptide y have opposing modulatory effects on nucleus of the solitary tract neurophysiological responses to gastric loads: implications for the control of food intake. Endocrinology. 2002;143:3779–84.

    PubMed  CAS  Google Scholar 

  10. Gropp E, Shanabrough M, Borok E, et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci. 2005;8:1289–91.

    PubMed  CAS  Google Scholar 

  11. Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310:683–5.

    PubMed  CAS  Google Scholar 

  12. Andrews ZB, Liu ZW, Walllingford N, et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature. 2008;454:846–51.

    PubMed  CAS  Google Scholar 

  13. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.

    PubMed  CAS  Google Scholar 

  14. Hewson AK, Dickson SL. Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol. 2000;12:1047–9.

    PubMed  CAS  Google Scholar 

  15. Wang L, Saint-Pierre DH, Tache Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y—synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett. 2002;325:47–51.

    PubMed  CAS  Google Scholar 

  16. Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB. Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Endocrinology. 2010;151:4745–55.

    PubMed  CAS  Google Scholar 

  17. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004;145:2607–12.

    PubMed  CAS  Google Scholar 

  18. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology. 2000;141:4797–800.

    PubMed  CAS  Google Scholar 

  19. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes. 2001;50:2438–43.

    PubMed  CAS  Google Scholar 

  20. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.

    PubMed  CAS  Google Scholar 

  21. Luquet S, Phillips CT, Palmiter RD. NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides. 2007;28:214–25.

    PubMed  CAS  Google Scholar 

  22. Willesen MG, Kristensen P, Romer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70:306–16.

    PubMed  CAS  Google Scholar 

  23. Tannenbaum GS, Lapointe M, Beaudet A, Howard AD. Expression of growth hormone secretagogue-receptors by growth hormone-releasing hormone neurons in the mediobasal hypothalamus. Endocrinology. 1998;139:4420–3.

    PubMed  CAS  Google Scholar 

  24. Shuto Y, Shibasaki T, Otagiri A, et al. Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest. 2002;109:1429–36.

    PubMed  CAS  Google Scholar 

  25. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.

    PubMed  CAS  Google Scholar 

  26. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci. 2008;11:998–1000.

    PubMed  CAS  Google Scholar 

  27. Andersson U, Filipsson K, Abbott CR, et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. 2004;279:12005–8.

    PubMed  CAS  Google Scholar 

  28. Kola B, Hubina E, Tucci SA, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem. 2005;280: 25196–201.

    PubMed  CAS  Google Scholar 

  29. Lopez M, Lage R, Saha AK, et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 2008;7:389–99.

    PubMed  CAS  Google Scholar 

  30. Kohno D, Gao HZ, Muroya S, Kikuyama S, Yada T. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes. 2003; 52:948–56.

    PubMed  CAS  Google Scholar 

  31. Kohno D, Sone H, Minokoshi Y, Yada T. Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem Biophys Res Commun. 2008;366:388–92.

    PubMed  CAS  Google Scholar 

  32. Kohno D, Nakata M, Maekawa F, et al. Leptin suppresses ghrelin-induced activation of neuropeptide Y neurons in the arcuate nucleus via phosphatidylinositol 3-kinase- and phosphodiesterase 3-mediated pathway. Endocrinology. 2007;148:2251–63.

    PubMed  CAS  Google Scholar 

  33. Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005; 2:21–33.

    PubMed  CAS  Google Scholar 

  34. Anderson KA, Ribar TJ, Lin F, et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 2008;7:377–88.

    PubMed  CAS  Google Scholar 

  35. Andrews ZB, Diano S, Horvath TL. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat Rev Neurosci. 2005;6:829–40.

    PubMed  CAS  Google Scholar 

  36. Briggs DI, Andrews ZB. Metabolic status regulates ghrelin function on energy homeostasis. Neuroendocrinology. 2010;93:48–57.

    PubMed  Google Scholar 

  37. Perreault M, Istrate N, Wang L, Nichols AJ, Tozzo E, Stricker-Krongrad A. Resistance to the orexigenic effect of ghrelin in dietary-induced obesity in mice: reversal upon weight loss. Int J Obes Relat Metab Disord. 2004;28:879–85.

    PubMed  CAS  Google Scholar 

  38. Banks WA. The blood–brain barrier as a cause of obesity. Curr Pharm Des. 2008;14:1606–14.

    PubMed  CAS  Google Scholar 

  39. Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 2008;7:179–85.

    PubMed  CAS  Google Scholar 

  40. Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, Kahn BB. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J Biol Chem. 2006;281:18933–41.

    PubMed  CAS  Google Scholar 

  41. Enriori PJ, Evans AE, Sinnayah P, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 2007;5:181–94.

    PubMed  CAS  Google Scholar 

  42. Munzberg H. Differential leptin access into the brain—a hierarchical organization of hypothalamic leptin target sites? Physiol Behav. 2008;94:664–9.

    PubMed  CAS  Google Scholar 

  43. Holst B, Cygankiewicz A, Jensen TH, Ankersen M, Schwartz TW. High constitutive signaling of the ghrelin receptor–identification of a potent inverse agonist. Mol Endocrinol. 2003; 17:2201–10.

    PubMed  CAS  Google Scholar 

  44. Petersen PS, Woldbye DP, Madsen AN, et al. In vivo characterization of high basal signaling from the ghrelin receptor. Endocrinology. 2009;150:4920–30.

    PubMed  CAS  Google Scholar 

  45. Schwartz MW, Sipols AJ, Marks JL, et al. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology. 1992;130:3608–16.

    PubMed  CAS  Google Scholar 

  46. Sipols AJ, Baskin DG, Schwartz MW. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes. 1995;44: 147–51.

    PubMed  CAS  Google Scholar 

  47. Shrestha YB, Wickwire K, Giraudo S. Effect of reducing hypothalamic ghrelin receptor gene expression on energy balance. Peptides. 2009;30:1336–41.

    PubMed  CAS  Google Scholar 

  48. Theander-Carrillo C, Wiedmer P, Cettour-Rose P, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest. 2006;116:1983–93.

    PubMed  CAS  Google Scholar 

  49. Sangiao-Alvarellos S, Helmling S, Vazquez MJ, Klussmann S, Cordido F. Ghrelin neutralization during fasting-refeeding cycle impairs the recuperation of body weight and alters hepatic energy metabolism. Mol Cell Endocrinol. 2011;335:177–88.

    PubMed  CAS  Google Scholar 

  50. Tschop M, Statnick MA, Suter TM, Heiman ML. GH-releasing peptide-2 increases fat mass in mice lacking NPY: indication for a crucial mediating role of hypothalamic agouti-related protein. Endocrinology. 2002;143:558–68.

    PubMed  CAS  Google Scholar 

  51. Erickson JC, Hollopeter G, Palmiter RD. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science. 1996;274:1704–7.

    PubMed  CAS  Google Scholar 

  52. Tiesjema B, la Fleur SE, Luijendijk MC, et al. Viral mediated neuropeptide Y expression in the rat paraventricular nucleus results in obesity. Obesity (Silver Spring). 2007; 15:2424–35.

    CAS  Google Scholar 

  53. Patel HR, Qi Y, Hawkins EJ, et al. Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice. Diabetes. 2006;55:3091–8.

    PubMed  CAS  Google Scholar 

  54. Zhang W, Zhao L, Lin TR, et al. Inhibition of adipogenesis by ghrelin. Mol Biol Cell. 2004;15:2484–91.

    PubMed  CAS  Google Scholar 

  55. Kim MS, Yoon CY, Jang PG, et al. The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes. Mol Endocrinol. 2004;18:2291–301.

    PubMed  CAS  Google Scholar 

  56. Liu J, Lin H, Cheng P, Hu X, Lu H. Effects of ghrelin on the proliferation and differentiation of 3T3-L1 preadipocytes. J Huazhong Univ Sci Technolog Med Sci. 2009;29:227–30.

    PubMed  CAS  Google Scholar 

  57. Zwirska-Korczala K, Adamczyk-Sowa M, Sowa P, et al. Role of leptin, ghrelin, angiotensin II and orexins in 3T3 L1 preadipocyte cells proliferation and oxidative metabolism. J Physiol Pharmacol. 2007;58 Suppl 1:53–64.

    Google Scholar 

  58. Miegueu P, St Pierre D, Broglio F, Cianflone K. Effect of desacyl ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes. J Cell Biochem. 2011;112:704–14.

    PubMed  CAS  Google Scholar 

  59. Rodriguez A, Gomez-Ambrosi J, Catalan V, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes (Lond). 2009;33:541–52.

    CAS  Google Scholar 

  60. Giovambattista A, Piermaria J, Suescun MO, Calandra RS, Gaillar RC, Spinedi E. Direct effect of ghrelin on leptin production by cultured rat white adipocytes. Obesity (Silver Spring). 2006;14:19–27.

    CAS  Google Scholar 

  61. Davies JS, Kotokorpi P, Eccles S, et al. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Mol Endocrinol. 2009;23:914–24.

    PubMed  CAS  Google Scholar 

  62. Papotti M, Ghe C, Cassoni P, et al. Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab. 2000;85:3803–7.

    PubMed  CAS  Google Scholar 

  63. Tsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Regul Pept. 2005;130:97–103.

    PubMed  CAS  Google Scholar 

  64. Thompson NM, Gill DA, Davies R, et al. Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. Endocrinology. 2004;145:234–42.

    PubMed  CAS  Google Scholar 

  65. Zhang W, Chai B, Li JY, Wang H, Mulholland MW. Effect of des-acyl ghrelin on adiposity and glucose metabolism. Endocrinology. 2008;149:4710–6.

    PubMed  CAS  Google Scholar 

  66. Delhanty PJ, Sun Y, Visser JA, et al. Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice. PLoS One. 2010;5:e11749.

    PubMed  Google Scholar 

  67. Sun Y, Butte NF, Garcia JM, Smith RG. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance. Endocrinology. 2008;149: 843–50.

    PubMed  CAS  Google Scholar 

  68. Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A. 2004;101:4679–84.

    PubMed  CAS  Google Scholar 

  69. Zigman JM, Nakano Y, Coppari R, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest. 2005;115:3564–72.

    PubMed  CAS  Google Scholar 

  70. Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.

    PubMed  CAS  Google Scholar 

  71. Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–9.

    PubMed  CAS  Google Scholar 

  72. Perello M, Sakata I, Birnbaum S, et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry. 2010;67:880–6.

    PubMed  CAS  Google Scholar 

  73. Zhao TJ, Liang G, Li RL, et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc Natl Acad Sci U S A. 2010; 107:7467–72.

    PubMed  CAS  Google Scholar 

  74. Pfluger PT, Kirchner H, Gunnel S, et al. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am J Physiol Gastrointest Liver Physiol. 2008;294:G610–8.

    PubMed  CAS  Google Scholar 

  75. Wortley KE, Anderson KD, Garcia K, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA. 2004; 101:8227–32.

    PubMed  CAS  Google Scholar 

  76. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    PubMed  CAS  Google Scholar 

  77. Dezaki K, Sone H, Koizumi M, et al. Blockade of pancreatic islet-derived ghrelin enhances insulin secretion to prevent high-fat diet-induced glucose intolerance. Diabetes. 2006; 55:3486–93.

    PubMed  CAS  Google Scholar 

  78. Sun Y, Asnicar M, Saha PK, Chan L, Smith RG. Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metab. 2006;3:379–86.

    PubMed  CAS  Google Scholar 

  79. Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab. 2001;86:5083–6.

    PubMed  CAS  Google Scholar 

  80. Alvarez-Castro P, Isidro M, Garcia-Buela J, Dieguez C, Casanueva FF, Cordido F. Effect of acute ghrelin administration on glycaemia and insulin levels in obese patients. Diabetes Obes Metab. 2006;8:555–60.

    PubMed  CAS  Google Scholar 

  81. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    PubMed  CAS  Google Scholar 

  82. Muller AF, Janssen JA, Hofland LJ, et al. Blockade of the growth hormone (GH) receptor unmasks rapid GH-releasing peptide-6-mediated tissue-specific insulin resistance. J Clin Endocrinol Metab. 2001;86:590–3.

    PubMed  CAS  Google Scholar 

  83. Vestergaard ET, Gormsen LC, Jessen N, et al. Ghrelin infusion in humans induces acute insulin resistance and lipolysis independent of growth hormone signaling. Diabetes. 2008;57:3205–10.

    PubMed  CAS  Google Scholar 

  84. Sangiao-Alvarellos S, Cordido F. Effect of ghrelin on glucose-insulin homeostasis: therapeutic implications. Int J Pept. [Epub 2010 Feb 9].

    Google Scholar 

  85. Heppner KM, Tong J, Kirchner H, Nass R, Tschop MH. The ghrelin O-acyltransferase-ghrelin system: a novel regulator of glucose metabolism. Curr Opin Endocrinol Diabetes Obes. 2011;18:50–5.

    PubMed  CAS  Google Scholar 

  86. Sandoval D, Cota D, Seeley RJ. The integrative role of CNS fuel-sensing mechanisms in energy balance and glucose regulation. Annu Rev Physiol. 2008;70:513–35.

    PubMed  CAS  Google Scholar 

  87. Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007;449:228–32.

    PubMed  CAS  Google Scholar 

  88. Murphy BA, Fioramonti X, Jochnowitz N, et al. Fasting enhances the response of arcuate neuropeptide Y-glucose-inhibited neurons to decreased extracellular glucose. Am J Physiol Cell Physiol. 2009;296:C746–56.

    PubMed  CAS  Google Scholar 

  89. van den Top M, Lyons DJ, Lee K, Coderre E, Renaud LP, Spanswick D. Pharmacological and molecular characterization of ATP-sensitive K(+) conductances in CART and NPY/AgRP expressing neurons of the hypothalamic arcuate nucleus. Neuroscience. 2007; 144:815–24.

    PubMed  Google Scholar 

  90. Singhal NS, Lazar MA, Ahima RS. Central resistin induces hepatic insulin resistance via neuropeptide Y. J Neurosci. 2007;27:12924–32.

    PubMed  CAS  Google Scholar 

  91. Date Y, Nakazato M, Hashiguchi S, et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes. 2002;51:124–9.

    PubMed  CAS  Google Scholar 

  92. Dezaki K, Hosoda H, Kakei M, et al. Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in beta-cells: implication in the glycemic control in rodents. Diabetes. 2004;53:3142–51.

    PubMed  CAS  Google Scholar 

  93. Qader SS, Hakanson R, Rehfeld JF, Lundquist I, Salehi A. Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: a study on isolated islets from mouse and rat pancreas. Regul Pept. 2008;146:230–7.

    PubMed  CAS  Google Scholar 

  94. Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105:745–55.

    PubMed  CAS  Google Scholar 

  95. Zhang CY, Parton LE, Ye CP, et al. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets. Cell Metab. 2006;3:417–27.

    PubMed  CAS  Google Scholar 

  96. Granata R, Baragli A, Settanni F, Scarlatti F, Ghigo E. Unraveling the role of the ghrelin gene peptides in the endocrine pancreas. J Mol Endocrinol. 2010;45:107–18.

    PubMed  CAS  Google Scholar 

  97. Tong J, Prigeon RL, Davis HW, et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes. 2010;59:2145–51.

    PubMed  CAS  Google Scholar 

  98. Murata M, Okimura Y, Iida K, et al. Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J Biol Chem. 2002;277:5667–74.

    PubMed  CAS  Google Scholar 

  99. Barazzoni R, Zanetti M, Cattin MR, et al. Ghrelin enhances in vivo skeletal muscle but not liver AKT signaling in rats. Obesity (Silver Spring). 2007;15:2614–23.

    CAS  Google Scholar 

  100. Lim CT, Kola B, Korbonits M, Grossman AB. Ghrelin’s role as a major regulator of appetite and its other functions in neuroendocrinology. Prog Brain Res. 2010;182:189–205.

    PubMed  CAS  Google Scholar 

  101. Patel AD, Stanley SA, Murphy KG, et al. Ghrelin stimulates insulin-induced glucose uptake in adipocytes. Regul Pept. 2006;134:17–22.

    PubMed  CAS  Google Scholar 

  102. Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50:707–9.

    PubMed  CAS  Google Scholar 

  103. Barazzoni R, Zanetti M, Stebel M, Biolo G, Cattin L, Guarnieri G. Hyperleptinemia prevents increased plasma ghrelin concentration during short-term moderate caloric restriction in rats. Gastroenterology. 2003;124:1188–92.

    PubMed  CAS  Google Scholar 

  104. Lutter M, Sakata I, Osborne-Lawrence S, et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat Neurosci. 2008;11:752–3.

    PubMed  CAS  Google Scholar 

  105. Redman LM, Veldhuis JD, Rood J, Smith SR, Williamson D, Ravussin E. The effect of caloric restriction interventions on growth hormone secretion in nonobese men and women. Aging Cell. 2010;9:32–9.

    PubMed  CAS  Google Scholar 

  106. Yukawa M, Cummings DE, Matthys CC, et al. Effect of aging on the response of ghrelin to acute weight loss. J Am Geriatr Soc. 2006;54:648–53.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NHMRC grant (606662) to PJE; a Monash Fellowship, Monash University, an Australian Research Council Future Fellowship, and NHMRC grant (546131) to ZBA; and a Pfizer Australia Research Fellowship, a VESKI Fellowship, and NHMRC grant (606662) to MAC.

Conflicts of interest: The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Alexander Cowley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Enriori, P.J., Andrews, Z.B., Cowley, M.A. (2012). Ghrelin: Neuropeptide Regulator of Metabolism. In: Smith, R., Thorner, M. (eds) Ghrelin in Health and Disease. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-903-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-903-7_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-902-0

  • Online ISBN: 978-1-61779-903-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics