Skip to main content

Proteomic Techniques for Plant–Fungal Interactions

  • Protocol
  • First Online:
Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

Proteomics is a key technique that is helping elucidate many complex biological processes. The analysis of plant–pathogen interactions using proteomics is complicated by the presence of the proteomes of two species, but is benefiting from the developing maturity and power of these techniques. More and more pathogen genomes are being sequenced, so fungal proteomics is reaching its full potential and remains the chosen technology to unravel the molecular pathways of pathogenicity and resistance. In this chapter, we suggest proteomic strategies that have proved successful on various plant-interacting fungal species. Several protein extraction methods are described. For adequate quantitative analyses of protein abundances, we recommend either separation using two-dimensional gel electrophoresis or labelling with isobaric tags followed by two-dimensional HPLC separation. Proteins of interest are then identified using mass spectrometry. Identified proteins can assist in refining genome annotations, otherwise known as proteogenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DE:

Two-dimensional electrophoresis

2-ME:

2-Mercaptoethanol

APS:

Ammonium persulfate

CAs:

Carrier Ampholites (IPG buffers from Bio-Rad for instance)

CHAPS:

3-[3-(Cholamidopropyl)dimethylammonio]-1-propanesulfonate

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

EDTA Na2 :

Ethylenediaminetetraacetic acid disodium salt

IEF:

Isoelectric focusing

IPG:

Immobilised pH gradient

iTRAQ:

Isobaric tag for relative and absolute quantitation

LC:

Liquid chromatography

MALDI-ToF/ToF:

Matrix assisted laser desorption ionisation- time of flight/time of flight

MeOH:

Methanol

MMTS:

Methyl methanethiosulfonate

PMSF:

Phenylmethanesulfonide fluoride

PVP:

Polyvinylpyrrolidone

SCX:

Strong cation exchange

SDS:

Sodium dodecyl sulphate

SPE:

Solid phase extraction

TCA:

Trichloroacetic acid

TCEP:

Tris-(2-carboxyethyl)-phosphine-HCl

TCEP:

Tris(2-carboxyethyl)phosphine

TEAB:

Triethylammonium bicarbonate

TEMED:

Tetramethylethylenediamine

References

  1. Tan, K. C., Simon V. S, I., Robert D, T., Richard P, O., and Peter S, S. (2009) Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology, Mol. Plant Pathol. 10, 703–709.

    Google Scholar 

  2. Mehta, A., Brasileiro, A. C. M., Souza, D. S. L., Romano, E., Campos, M. A., Grossi-De-Sa, M. F., Silva, M. S., Franco, O. L., Fragoso, R. R., Bevitori, R., and Rocha, T. L. (2008) Plant-pathogen interactions: What is proteomics telling us?, FEBS J. 275, 3731–3746.

    Article  PubMed  CAS  Google Scholar 

  3. Ellis, J. G., Dodds, P. N., and Lawrence, G. J. (2007) The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi, Curr. Opin. Microbiol. 10, 326–331.

    Article  PubMed  CAS  Google Scholar 

  4. Oliver, R. P., and Solomon, P. S. (2010) New developments in pathogenicity and virulence of necrotrophs., Curr Opin Plant Biol 13, 415–419.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, Z., Faris, J. D., Oliver, R. P., Tan, K. C., Solomon, P. S., McDonald, M. C., McDonald, B. A., Nunez, A., Lu, S., Rasmussen, J. B., and Friesen, T. L. (2009) SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene, PLoS Path. 5. e10005816.

    Google Scholar 

  6. Friesen, T. L., Faris, J. D., Solomon, P. S., and Oliver, R. P. (2008) Host-specific toxins: Effectors of necrotrophic pathogenicity, Cell. Microbiol. 10, 1421–1428.

    Article  PubMed  CAS  Google Scholar 

  7. Bindschedler, L. V., Burgis, T. A., Mills, D. J. S., Ho, J. T. C., Cramer, R., and Spanu, P. D. (2009) In planta proteomics and proteogenomics of the biotrophic Barley fungal pathogen Blumeria graminis f. sp. hordei, Mol. Cell. Proteomics 8, 2368–2381.

    CAS  Google Scholar 

  8. Kim, S. T., Yu, S., Kim, S. G., Kim, H. J., Kang, S. Y., Hwang, D. H., Jang, Y. S., and Kang, K. Y. (2004) Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation, Proteomics 4, 3579–3587.

    Article  PubMed  CAS  Google Scholar 

  9. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents, Mol. Cell. Proteomics 3, 1154–1169.

    Article  PubMed  CAS  Google Scholar 

  10. Damerval, C., de Vienne, D., Zivy, M., and Thiellement, H. (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7, 52–54.

    Article  CAS  Google Scholar 

  11. Hurkman, W. J., and Tanaka, C. K. (1986) Solubilization of Plant Membrane Proteins for Analysis by Two-Dimensional Gel Electrophoresis. 1986, 81, 802-806. Plant Physiol 81, 802–806.

    Google Scholar 

  12. Casey, T., Solomon, P. S., Bringans, S., Tan, K. C., Oliver, R. P., and Lipscombe, R. (2010) Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification, Proteomics 10, 38–47.

    Article  PubMed  CAS  Google Scholar 

  13. Vincent, D., Balesdent, M. H., Gibon, J., Claverol, S., Lapaillerie, D., Lomenech, A. M., Blaise, F. O., Rouxel, T., Martin, F., Bonneu, M., Amselem, J., Dominguez, V., Howlett, B. J., Wincker, P., Joets, J., Lebrun, M. H., and Plomion, C. (2009) Hunting down fungal secretomes using liquid-phase IEF prior to high resolution 2-DE, Electrophoresis 30, 4118–4136.

    Article  PubMed  CAS  Google Scholar 

  14. Tan, K. C., Heazlewood, J. L., Millar, A. H., Thomson, G., Oliver, R. P., and Solomon, P. S. (2008) A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development, Eukaryot. Cell 7, 1916–1929.

    CAS  Google Scholar 

  15. Tan, K.-C., Heazlewood, J. L., Millar, A. H., Oliver, R. P., and Solomon, P. S. (2009) Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum, Mycol. Res. 113, 523–531.

    Article  PubMed  CAS  Google Scholar 

  16. Bringans, S., Hane, J. K., Casey, T., Tan, K. C., Lipscombe, R., Solomon, P. S., and Oliver, R. P. (2009) Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum, BMC Bioinformatics 10, 301.

    Article  PubMed  Google Scholar 

  17. Rabilloud, T. (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis, Electrophoresis 19, 758–760.

    Article  PubMed  CAS  Google Scholar 

  18. Herbert, B. (1999) Advances in protein solubilisation for two-dimensional electrophoresis, Electrophoresis 20, 660–663.

    Article  PubMed  CAS  Google Scholar 

  19. Herbert, B. R., Molloy, M. P., Gooley, A. A., Walsh, B. J., Bryson, W. G., and Williams, K. L. (1998) Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent, Electrophoresis 19, 845–851.

    Article  PubMed  CAS  Google Scholar 

  20. Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  21. Huang, X., and Madan, A. (1999) CAP3: A DNA sequence assembly program, Genome Res 9, 868–877.

    Article  PubMed  CAS  Google Scholar 

  22. Elias JE, Haas W, Faherty BK, and SP:, G. (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations, Nat Methods 2, 667–675.

    Google Scholar 

  23. Bohmer, M., Colby, T., Bohmer, C., Brautigam, A., Schmidt, J., and Bolker, M. (2007) Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis, Proteomics 7, 675–685.

    Article  PubMed  Google Scholar 

  24. Paper, J. M., Scott-Craig, J. S., Adhikari, N. D., Cuomo, C. A., and Walton, J. D. (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum, Proteomics 7, 3171–3183.

    Article  PubMed  CAS  Google Scholar 

  25. Phalip, V., Delalande, F., Carapito, C., Goubet, F., Hatsch, D., Leize-Wagner, E., Dupree, P., Dorsselaer, A. V., and Jeltsch, J. M. (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall, Curr. Genet. 48, 366–379.

    Article  PubMed  CAS  Google Scholar 

  26. Shah, P., Gutierrez-Sanchez, G., Orlando, R., and Bergmann, C. (2009) A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture, Proteomics 9, 3126–3135.

    Article  PubMed  CAS  Google Scholar 

  27. Shah, P., Atwood, J. A., Orlando, R., Mubarek, H. E., Podila, G. K., and Davis, M. R. (2009) Comparative proteomic analysis of botrytis cinerea secretome, Journal of Proteome Research 8, 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  28. Yajima, W., and Kav, N. N. (2006) The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum, Proteomics 6, 5995–6007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vincent, D., Tan, KC., Cassidy, L., Solomon, P.S., Oliver, R.P. (2012). Proteomic Techniques for Plant–Fungal Interactions. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics