Skip to main content

Biomarker Validation in Blood Specimens by Selected Reaction Monitoring Mass Spectrometry of N-Glycosites

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 728))

Abstract

Targeted mass spectrometry using selected reaction monitoring (SRM) has emerged as the method of choice for the validation in blood serum, plasma, or other clinically relevant specimens of biomarker candidates arising from comparative proteomics or other discovery strategies. Here, we describe a method in which N-glycosites are selectively enriched from biological specimens by solid phase capture and PNGase F release, and then analyzed by SRM. Focusing the highly sensitive targeted mass spectrometry method on a subproteome enriched for secreted and shed proteins reproducibly identifies and quantifies such proteins in serum and plasma at the low nanogram per milliliter (ng/mL) concentration range. This protocol is intended to give an introduction to SRM-based targeted mass spectrometry with a special focus on the validation of biomarker candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, S.M., and Simpson, R.J. (2007) Body fluid proteomics: Prospects for biomarker discovery, Proteomics Clin. Appl. 1, 1004–1015.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, N. L., and Anderson, N. G. (2002) The human plasma proteome: history, character, and diagnostic prospects, Mol Cell Proteomics 1, 845–867.

    Article  PubMed  CAS  Google Scholar 

  3. Schiess, R., Wollscheid, B., and Aebersold, R. (2009) Targeted proteomic strategy for clinical biomarker discovery, Mol Oncol 3, 33–44.

    Article  PubMed  CAS  Google Scholar 

  4. White, C. N., Chan, D. W., and Zhang, Z. (2004) Bioinformatics strategies for proteomic profiling, Clin Biochem 37, 636–641.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang, H., Li, X. J., Martin, D. B., and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry, Nat Biotechnol 21, 660–666.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang, H., Liu, A. Y., Loriaux, P. et al. (2007) Mass spectrometric detection of tissue proteins in plasma, Mol Cell Proteomics 6, 64–71.

    PubMed  CAS  Google Scholar 

  7. Wollscheid, B., Bausch-Fluck, D., Henderson, C. et al. (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins, Nat Biotechnol 27, 378–386.

    Article  PubMed  CAS  Google Scholar 

  8. Stahl-Zeng, J., Lange, V., Ossola, R. et al. (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites, Mol Cell Proteomics 6, 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  9. Lange, V., Picotti, P., Domon, B., and Aebersold, R. (2008) Selected reaction monitoring for quantitative proteomics: a tutorial, Mol Syst Biol 4, 222.

    Article  PubMed  Google Scholar 

  10. Mallick, P., Schirle, M., Chen, S. S., et al. (2007) Computational prediction of proteotypic peptides for quantitative proteomics, Nat Biotechnol 25, 125–131.

    Article  PubMed  CAS  Google Scholar 

  11. Kuster, B., Schirle, M., Mallick, P., and Aebersold, R. (2005) Scoring proteomes with proteotypic peptide probes, Nat Rev Mol Cell Biol 6, 577–583.

    Article  PubMed  CAS  Google Scholar 

  12. Addona, T. A., Abbatiello, S. E., Schilling, B. et al. (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma, Nat Biotechnol 27, 633–641.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson, L., and Hunter, C. L. (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins, Mol Cell Proteomics 5, 573–588.

    PubMed  CAS  Google Scholar 

  14. Kuzyk, M. A., Smith, D., Yang, J. et al. (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma, Mol Cell Proteomics 8, 1860–1877.

    Article  PubMed  CAS  Google Scholar 

  15. Picotti, P., Bodenmiller, B., Mueller, L. N. et al. (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics, Cell 138, 795–806.

    Article  PubMed  CAS  Google Scholar 

  16. Picotti, P., Lam, H., Campbell, D., Deutsch, E. W. et al. (2008) A database of mass spectrometric assays for the yeast proteome, Nat Methods 5, 913–914.

    Article  PubMed  CAS  Google Scholar 

  17. Picotti, P., Rinner, O., Stallmach, R. et al. (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes, Nat Methods 7, 43–46

    Article  PubMed  CAS  Google Scholar 

  18. Desiere, F., Deutsch, E. W., Nesvizhskii, A. I. et al. (2005) Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry, Genome Biol 6, R9.

    Article  PubMed  Google Scholar 

  19. Deutsch, E. W., Lam, H., and Aebersold, R. (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows, EMBO Rep 9, 429–434.

    Article  PubMed  CAS  Google Scholar 

  20. Lam, H., Deutsch, E. W., Eddes, J. S. et al. (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS, Proteomics 7, 655–667.

    Article  PubMed  CAS  Google Scholar 

  21. Lam, H., Deutsch, E. W., Eddes, J. S. et al. (2008) Building consensus spectral libraries for peptide identification in proteomics, Nat Methods 5, 873–875.

    Article  PubMed  CAS  Google Scholar 

  22. Fusaro, V. A., Mani, D. R., Mesirov, J. P., and Carr, S. A. (2009) Prediction of high-responding peptides for targeted protein assays by mass spectrometry, Nat Biotechnol 27, 190–198.

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt, A., Claassen, M., and Aebersold, R. (2009) Directed mass spectrometry: towards hypothesis-driven proteomics, Curr Opin Chem Biol 13, 510–517.

    Article  PubMed  CAS  Google Scholar 

  24. Keller, A., Eng, J., Zhang, N., Li, X. J., and Aebersold, R. (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats, Mol Syst Biol 1, 2005 0017.

    PubMed  Google Scholar 

  25. Malmstrom, J., Beck, M., Schmidt, A. et al. (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans, Nature 460, 762–765.

    Article  PubMed  Google Scholar 

  26. Kitteringham, N. R., Jenkins, R. E., Lane, C. S. et al. (2009) Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics, J Chromatogr B Analyt Technol Biomed Life Sci 877, 1229–1239.

    Article  PubMed  CAS  Google Scholar 

  27. Pan, S., Aebersold, R., Chen, R. et al. (2009) Mass spectrometry based targeted protein quantification: methods and applications, J Proteome Res 8, 787–797.

    Article  PubMed  CAS  Google Scholar 

  28. Elias, J. E., and Gygi, S. P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry, Nat Methods 4, 207–214.

    Article  PubMed  CAS  Google Scholar 

  29. Reiter, L., Rinner, O., Picotti, P., et al. (2011) mProphet: A general and flexible data model and algorithm for automated SRM data processing and statistical error estimation, Nat Methods, submitted.

    Google Scholar 

  30. Sherwood, C. A., Eastham, A., Lee, L. W. et al. (2009) Rapid optimization of MRM-MS instrument parameters by subtle alteration of precursor and product m/z targets, J Proteome Res 8, 3746–3751.

    Article  PubMed  CAS  Google Scholar 

  31. MacLean, B., Tomazela, D. M., Shulman, N. et al. (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics 26, 966–968.

    Article  PubMed  CAS  Google Scholar 

  32. Sherwood, C. A., Eastham, A., Lee, L. W. et al. (2009) MaRiMba: a software application for spectral library-based MRM transition list assembly, J Proteome Res 8, 4396–4405.

    Article  PubMed  CAS  Google Scholar 

  33. Sherman, J., McKay, M. J., Ashman, K., and Molloy, M. P. (2009) How specific is my SRM?: The issue of precursor and product ion redundancy, Proteomics 9, 1120-1123.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruedi Aebersold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ossola, R., Schiess, R., Picotti, P., Rinner, O., Reiter, L., Aebersold, R. (2011). Biomarker Validation in Blood Specimens by Selected Reaction Monitoring Mass Spectrometry of N-Glycosites. In: Simpson, R., Greening, D. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 728. Humana Press. https://doi.org/10.1007/978-1-61779-068-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-068-3_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-067-6

  • Online ISBN: 978-1-61779-068-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics