Skip to main content

Isolation of Genomic Insertion Sites of Proviruses Using Splinkerette-PCR-Based Procedures

  • Protocol
  • First Online:
PCR Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 687))

Abstract

The availability of whole genomic sequences provides a great framework for biologists to address a broad range of scientific questions. However, functions of most mammalian genes remain obscure. The forward genetics strategy of insertional mutagenesis uses DNA mutagens such as retroviruses and transposable elements; this strategy represents a powerful approach to functional genomics. A variety of methods to uncover insertion sites have been described. This chapter details SplinkTA-PCR and SplinkBlunt-PCR, modified from splinkerette-PCR, for mapping chromosomally the insertion sites of a murine leukemia virus that causes leukemia in the BXH-2 strain of mice. These protocols are easy to use, reliable, and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zambrowicz, B. P., Friedrich, G. A., Buxton, E. C., Lilleberg, S. L., Person, C., and Sands, A. T. (1998) Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392 608–11.

    Article  PubMed  CAS  Google Scholar 

  2. Friedrich, G. and Soriano, P. (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5 1513–23.

    Article  PubMed  CAS  Google Scholar 

  3. Miskey, C., Izsvak, Z., Kawakami, K. and Ivics, Z. (2005) DNA transposons in vertebrate functional genomics. Cell Mol Life Sci 62 629–41.

    Article  PubMed  CAS  Google Scholar 

  4. Uren, A. G., Kool, J., Berns, A. and van Lohuizen, M. (2005) Retroviral insertional mutagenesis: past, present and future. Oncogene 24 7656–72.

    Article  PubMed  CAS  Google Scholar 

  5. Neil, J. C. and Cameron, E. R. (2002) Retroviral insertion sites and cancer: fountain of all knowledge? Cancer Cell 2 253–5.

    Article  PubMed  CAS  Google Scholar 

  6. Mikkers, H., Allen, J., Knipscheer, P., Romeijn, L., Hart, A., Vink, E., and Berns, A. (2002) High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 32 153–9.

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki, T., Minehata, K., Akagi, K., Jenkins, N. A. and Copeland, N. G. (2006) Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. Embo J 25 3422–31.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki, T., Shen, H., Akagi, K., Morse, H. C., Malley, J. D., Naiman, D. Q., Jenkins, N. A., and Copeland, N. G. (2002) New genes involved in cancer identified by retroviral tagging. Nat Genet 32 166–74.

    Article  PubMed  CAS  Google Scholar 

  9. Iwasaki, M., Kuwata, T., Yamazaki, Y., Jenkins, N. A., Copeland, N. G., Osato, M., Ito, Y., Kroon, E., Sauvageau, G., and Nakamura, T. (2005) Identification of cooperative genes for NUP98-HOXA9 in myeloid leukemogenesis using a mouse model. Blood 105 784–93.

    Article  PubMed  CAS  Google Scholar 

  10. Castilla, L. H., Perrat, P., Martinez, N. J., Landrette, S. F., Keys, R., Oikemus, S., Flanegan, J., Heilman, S., Garrett, L., Dutra, A., Anderson, S., Pihan, G. A., Wolff, L., and Liu, P. P. (2004) Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci U S A 101 4924–9.

    Article  PubMed  CAS  Google Scholar 

  11. Lund, A. H., Turner, G., Trubetskoy, A., Verhoeven, E., Wientjens, E., Hulsman, D., Russell, R., DePinho, R. A., Lenz, J., and van Lohuizen, M. (2002) Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 32 160–5.

    Article  PubMed  CAS  Google Scholar 

  12. Ding, S., Wu, X., Li, G., Han, M., Zhuang, Y., and Xu, T. (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122 473–83.

    Article  PubMed  CAS  Google Scholar 

  13. Starr, T. K., Allaei, R., Silverstein, K. A., Staggs, R. A., Sarver, A. L., Bergemann, T. L., Gupta, M., O’Sullivan, M. G., Matise, I., Dupuy, A. J., Collier, L. S., Powers, S., Oberg, A. L., Asmann, Y. W., Thibodeau, S. N., Tessarollo, L., Copeland, N. G., Jenkins, N. A., Cormier, R. T., and Largaespada, D. A. (2009) A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323 1747–50.

    Article  PubMed  CAS  Google Scholar 

  14. Jenkins, N. A., Copeland, N. G., Taylor, B. A., Bedigian, H. G., and Lee, B. K. (1982) Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH-2 recombinant inbred mice. J Virol 42 379–88.

    PubMed  CAS  Google Scholar 

  15. Blaydes, S. M., Kogan, S. C., Truong, B. T., Gilbert, D. J., Jenkins, N. A., Copeland, N. G., Largaespada, D. A., and Brannan, C. I. (2001) Retroviral integration at the Epi1 locus cooperates with Nf1 gene loss in the progression to acute myeloid leukemia. J Virol 75 9427–34.

    Article  PubMed  CAS  Google Scholar 

  16. Triglia, T., Peterson, M. G., and Kemp, D. J. (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16 8186.

    Article  PubMed  CAS  Google Scholar 

  17. Hansen, G. M., Skapura, D., and Justice, M. J. (2000) Genetic profile of insertion mutations in mouse leukemias and lymphomas. Genome Res 10 237–43.

    Article  PubMed  CAS  Google Scholar 

  18. Yan, Y., Li, L., Gu, J., Tan, G., and Chen, Z. (2003) T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res 31 e68.

    Article  Google Scholar 

  19. Shen, H., Suzuki, T., Munroe, D. J., Stewart, C., Rasmussen, L., Gilbert, D. J., Jenkins, N. A., and Copeland, N. G. (2003) Common sites of retroviral integration in mouse hematopoietic tumors identified by high-throughput, single nucleotide polymorphism-based mapping and bacterial artificial chromosome hybridization. J Virol 77 1584–8.

    Article  PubMed  CAS  Google Scholar 

  20. Riley, J., Butler, R., Ogilvie, D., Finniear, R., Jenner, D., Powell, S., Anand, R., Smith, J. C., and Markham, A. F. (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res 18 2887–90.

    Article  PubMed  CAS  Google Scholar 

  21. Mueller, P. R. and Wold, B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246 780–6.

    Article  PubMed  CAS  Google Scholar 

  22. Shyamala, V. and Ames, G. F. (1989) Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene 84 1–8.

    Article  PubMed  CAS  Google Scholar 

  23. Frohman, M. A. (1993) Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 218 340–56.

    Article  PubMed  CAS  Google Scholar 

  24. Schaefer, B. C. (1995) Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem 227 255–73.

    Article  PubMed  CAS  Google Scholar 

  25. Mizobuchi, M. and Frohman, L. A. (1993) Rapid amplification of genomic DNA ends. Biotechniques 15 214–6.

    PubMed  CAS  Google Scholar 

  26. Devon, R. S., Porteous, D. J. and Brookes, A. J. (1995) Splinkerettes – improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 23 1644–5.

    Article  PubMed  CAS  Google Scholar 

  27. Yin, B., Delwel, R., Valk, P. J., Wallace, M. R., Loh, M. L., Shannon, K. M., and Largaespada, D. A. (2009) A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 113 1075–85.

    Article  PubMed  CAS  Google Scholar 

  28. Horn, C., Hansen, J., Schnutgen, F., Seisenberger, C., Floss, T., Irgang, M., De-Zolt, S., Wurst, W., von Melchner, H., and Noppinger, P. R. (2007) Splinkerette PCR for more efficient characterization of gene trap events. Nat Genet 39 933–4.

    Article  PubMed  CAS  Google Scholar 

  29. Kong, J., Zhu, F., Stalker, J., and Adams, D. J. (2008) iMapper: a web application for the automated analysis and mapping of insertional mutagenesis sequence data against Ensembl genomes. Bioinformatics 24 2923–5.

    Article  PubMed  CAS  Google Scholar 

  30. Yin, B., and Largaespada, D. A. (2007) PCR-based procedures to isolate insertion sites of DNA elements. Biotechniques 43 79–84.

    Article  PubMed  CAS  Google Scholar 

  31. Clark, J. M. (1988) Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res 16 9677–86.

    Article  PubMed  CAS  Google Scholar 

  32. Hu, G. (1993) DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3′ end of a DNA fragment. DNA Cell Biol 12 763–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to express thanks to Ms. Marianna L. Wong and Mr. John W. Myers III for their help with grammatical editing. This work is supported by the National Basic Research Program of China (973 Program, No. 2011CB933501, to Dr. Bin Yin) and the NSFC Project (No. 81070417, to Dr. Bin Yin).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Yin, B. (2011). Isolation of Genomic Insertion Sites of Proviruses Using Splinkerette-PCR-Based Procedures. In: Park, D. (eds) PCR Protocols. Methods in Molecular Biology, vol 687. Humana Press. https://doi.org/10.1007/978-1-60761-944-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-944-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-943-7

  • Online ISBN: 978-1-60761-944-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics