Skip to main content

Antibody Affinity Optimization Using Yeast Cell Surface Display

  • Protocol
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 504))

Summary

Many biosensors depend on molecular recognition reagents to achieve highly sensitive and specific detection levels of an analyte of interest. Although new and improved detection platforms continue to be developed, improvements in the affinity and specificity of the molecular recognition reagents often dictate the ultimate performance level and utility of the instrument. Accordingly, large effort is placed in discovering and characterizing the reagents to be used for a biosensor application. Antibodies, owing to their unparalleled ability to bind a diverse array of antigens with high affinity and specificity, have been widely used as molecular recognition reagents in the biosensor field. The recent advent of recombinant in vitro antibody display technologies, in general, and yeast surface display, in particular, allow specific traits of a given antibody to be discreetly augmented to enhance biosensor performance. Large variegated libraries derived from existing antibodies already employed in a particular biosensor can be created and screened for mutations that confer a desired improved phenotype leading to enhanced biosensor performance. This chapter will provide a protocol for the affinity maturation of a previously isolated monoclonal antibody, the most widely used application of in vitro directed evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parmley, S. F., and Smith, G. P. (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73, 305–18

    Article  CAS  PubMed  Google Scholar 

  2. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–4

    Article  CAS  PubMed  Google Scholar 

  3. Hanes, J., and Plückthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94, 4937–42

    Article  CAS  PubMed  Google Scholar 

  4. Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L., and Curtiss 3rd, R. (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recom-binant vaccines. Nat Biotechnol 15, 29–34

    Article  CAS  PubMed  Google Scholar 

  5. Boder, E. T., and Wittrup, K. D. (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15, 553–7

    Article  CAS  PubMed  Google Scholar 

  6. Levin, A. M., and Weiss, G. A. (2006) Optimizing the affinity and specificity of proteins with molecular display. Mol Biosyst 2, 49–57

    Article  CAS  PubMed  Google Scholar 

  7. Boder, E. T., Midelfort, K. S., and Wittrup, K. D. (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97, 10701–5

    Article  CAS  PubMed  Google Scholar 

  8. Graff, C. P. , Chester, K., Begent, R., and Wittrup, K. D. (2004) Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng Des Sel 17, 293–304

    Article  CAS  PubMed  Google Scholar 

  9. Razai, A., Garcia-Rodriguez, C., Lou, J., Geren, I. N., Forsyth, C. M., Robles, Y., Tsai, R., Smith, T. J., Smith, L. A., Siegel, R. W., Feldhaus, M., and Marks, J. D. (2005) Molecular evolution of antibody affinity for sensitive detection of botuli-num neurotoxin type A. J Mol Biol 351, 158–69

    Article  CAS  PubMed  Google Scholar 

  10. Weaver-Feldhaus, J. M., Miller, K. D., Feldhaus, M. J., and Siegel, R. W. (2005) Directed evolution for the development of conformation-specific affinity reagents using yeast display. Protein Eng Des Sel18, 527–36

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Rodriguez, C., Levy, R., Arndt, J. W., Forsyth, C. M., Razai, A., Lou, J., Geren, I., Stevens, R. C., and Marks, J. D. (2007) Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat Biotechnol 25, 107–16

    Article  CAS  PubMed  Google Scholar 

  12. Swers, J. S., Kellogg, B. A., and Wittrup, K. D. (2004) Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res32, e36

    Article  PubMed  Google Scholar 

  13. Weaver-Feldhaus, J. M., Lou, J., Coleman, J. R., Siegel, R. W., Marks, J. D., and Feld-haus, M. J. (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564, 24–34

    Article  CAS  PubMed  Google Scholar 

  14. VanAntwerp, J. J., and Wittrup, K. D. (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16, 31–7

    Article  CAS  PubMed  Google Scholar 

  15. Siegel, R. W., Coleman, J. R., Miller, K. D., and Feldhaus, M. J. (2004) High efficiency recovery and epitope-specific sorting of an scFv yeast display library. J Immunol Methods 286, 141–53

    Article  CAS  PubMed  Google Scholar 

  16. Boder, E. T., and Wittrup, K. D. (1998) Optimal screening of surface-displayed polypep-tide libraries. Biotechnol Prog 14, 55–62

    Article  CAS  PubMed  Google Scholar 

  17. Miller, K. D., Weaver-Feldhaus, J., Gray, S. A., Siegel, R. W., and Feldhaus, M. J. (2005) Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expr Purif 42, 255–67

    Article  CAS  PubMed  Google Scholar 

  18. Ewert, S., Huber, T., Honegger, A., and Pluckthun, A. (2003) Biophysical properties of human antibody variable domains. J Mol Biol 325, 531–53

    Article  CAS  PubMed  Google Scholar 

  19. Corisdeo, S., and Wang, B. (2004) Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Protein Expr Purif 34, 270–9

    Article  CAS  PubMed  Google Scholar 

  20. Li, J., Menzel, C., Meier, D., Zhang, C., Dubel, S., and Jostock, T. (2007) A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods 318, 113

    Article  CAS  PubMed  Google Scholar 

  21. Zaccolo, M., Williams, D. M., Brown, D. M., and Gherardi, E. (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J Mol Biol 255, 589–603

    Article  CAS  PubMed  Google Scholar 

  22. Gietz, R. D., and Woods, R. A. (2006) Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol 313, 107–20

    CAS  PubMed  Google Scholar 

  23. Chao, G., Lau, W. L., Hackel, B. J., Sazinsky, S. L., Lippow, S. M., and Wittrup, K. D. (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1, 755–68

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Siegel, R.W. (2009). Antibody Affinity Optimization Using Yeast Cell Surface Display. In: Rasooly, A., Herold, K.E. (eds) Biosensors and Biodetection. Methods in Molecular Biology™, vol 504. Humana Press. https://doi.org/10.1007/978-1-60327-569-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-569-9_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-568-2

  • Online ISBN: 978-1-60327-569-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics