Skip to main content

Molecular Assays for Characterization of Alternatively Spliced Isoforms of the Mu Opioid Receptor (MOR)

  • Protocol
  • First Online:
Analgesia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 617))

Abstract

Mu-opioid receptor (MOR) belongs to a family of heptahelical G-protein-coupled receptors (GPCRs). Studies in humans and rodents demonstrated that the OPRM1 gene coding for MOR undergoes extensive alternative splicing afforded by the genetic complexity of OPRM1. Evidence from rodent studies also demonstrates an important role of these alternatively spliced forms in mediating opiate analgesia via their differential signaling properties. MOR signaling is predominantly Gia coupled. Release of the α subunit from G-protein complex results in the inhibition of adenylyl cyclase/cAMP pathway, whereas release of the βγ subunits activates G-protein-activated inwardly rectifying potassium channels and inhibits voltage-dependent calcium channels. These molecular events result in the suppression of cellular activities that diminish pain sensations. Recently, a new isoform of OPRM1, MOR3, has been identified that shows an increase in the production of nitric oxide (NO) upon stimulation with morphine. Hence, there is a need to describe molecular techniques that enable the functional characterization of MOR isoforms. In this review, we describe the methodologies used to assay key mediators of MOR activation including cellular assays for cAMP, free Ca2+, and NO, all of which have been implicated in the pharmacological effects of MOR agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pasternak GW (2004) Multiple opiate receptors: deja vu all over again. Neuropharmacology 47(Suppl. 1):312–323

    Article  PubMed  CAS  Google Scholar 

  2. Pan YX et al (2003) Identification and characterization of two new human mu opioid receptor splice variants, hMOR-1O and hMOR-1X. Biochem Biophys Res Commun 301(4):1057–1061

    Article  PubMed  CAS  Google Scholar 

  3. Pasternak DA et al (2004) Identification of three new alternatively spliced variants of the rat mu opioid receptor gene: dissociation of affinity and efficacy. J Neurochem 91(4):881–890

    Article  PubMed  CAS  Google Scholar 

  4. Pan YX et al (2005) Identification of four novel exon 5 splice variants of the mouse mu-opioid receptor gene: functional consequences of C-terminal splicing. Mol Pharmacol 68(3):866–875

    PubMed  CAS  Google Scholar 

  5. Pan L et al (2005) Identification and characterization of six new alternatively spliced variants of the human mu opioid receptor gene, Oprm. Neuroscience 133(1):209–220

    Article  PubMed  CAS  Google Scholar 

  6. Shabalina SA et al (2008) Expansion of the human {micro}-opioid receptor gene architecture: novel functional variants. Hum Mol Genet. 2009 Mar 15;18(6):1037–51

    Article  PubMed  Google Scholar 

  7. Gris P, Cheng P, Pierson J, Gauthier J, Shabalina S, Spiridonov N, Maixner W, Diatchenko L (2008) Functional characterization of the novel alternatively spliced form of mu-opioid receptor OPRM1. In: 12th World congress on pain. Glasgow, UK

    Google Scholar 

  8. Cadet P, Mantione KJ, Stefano GB (2003) Molecular identification and functional expression of mu 3, a novel alternatively spliced variant of the human mu opiate receptor gene. J Immunol 170(10):5118–5123

    PubMed  CAS  Google Scholar 

  9. Rubovitch V, Gafni M, Sarne Y (2003) The mu opioid agonist DAMGO stimulates cAMP production in SK-N-SH cells through a PLC-PKC-Ca++ pathway. Brain Res Mol Brain Res 110(2):261–266

    Article  PubMed  CAS  Google Scholar 

  10. Galeotti N et al (2006) Signaling pathway of morphine induced acute thermal hyperalgesia in mice. Pain 123(3):294–305

    Article  PubMed  CAS  Google Scholar 

  11. Costigan M, Woolf CJ (2000) Pain: molecular mechanisms. J Pain 1(3 Suppl):35–44

    PubMed  CAS  Google Scholar 

  12. Dolan S, Nolan AM (2001) Biphasic modulation of nociceptive processing by the cyclic AMP-protein kinase A signalling pathway in sheep spinal cord. Neurosci Lett 309(3):157–160

    Article  PubMed  CAS  Google Scholar 

  13. Vetter I et al (2006) The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol Pain 2:22

    Article  PubMed  Google Scholar 

  14. North RA et al (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci U S A 84(15):5487–5491

    Article  PubMed  CAS  Google Scholar 

  15. Chieng BC et al (2008) Functional coupling of mu-receptor-Galphai-tethered proteins in AtT20 cells. Neuroreport 19(18):1793–1796

    Article  PubMed  CAS  Google Scholar 

  16. Ikeda K et al (2000) Involvement of G-protein-activated inwardly rectifying K (GIRK) channels in opioid-induced analgesia. Neurosci Res 38(1):113–116

    Article  PubMed  CAS  Google Scholar 

  17. Saegusa H et al (2000) Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci U S A 97(11):6132–6137

    Article  PubMed  CAS  Google Scholar 

  18. Wang L, Gintzler AR (1997) Altered mu-opiate receptor-G protein signal transduction following chronic morphine exposure. J Neurochem 68(1):248–254

    Article  PubMed  CAS  Google Scholar 

  19. Ito A et al (2000) Mechanisms for ovariectomy-induced hyperalgesia and its relief by calcitonin: participation of 5-HT1A-like receptor on C-afferent terminals in substantia gelatinosa of the rat spinal cord. J Neurosci 20(16):6302–6308

    PubMed  CAS  Google Scholar 

  20. Fields A, Sarne Y (1997) The stimulatory effect of opioids on cyclic AMP production in SK-N-SH cells is mediated by calcium ions. Life Sci 61(6):595–602

    Article  PubMed  CAS  Google Scholar 

  21. Sarne Y et al (1998) Dissociation between the inhibitory and stimulatory effects of opioid peptides on cAMP formation in SK-N-SH neuroblastoma cells. Biochem Biophys Res Commun 246(1):128–131

    Article  PubMed  CAS  Google Scholar 

  22. Crain SM, Shen KF (2000) Antagonists of excitatory opioid receptor functions enhance morphine’s analgesic potency and attenuate opioid tolerance/dependence liability. Pain 84(2-3):121–131

    Article  PubMed  CAS  Google Scholar 

  23. Olmstead MC, Burns LH (2005) Ultra-low-dose naltrexone suppresses rewarding effects of opiates and aversive effects of opiate withdrawal in rats. Psychopharmacology (Berl) 181(3):576–581

    Article  CAS  Google Scholar 

  24. Crain SM, Shen KF (2001) Acute thermal hyperalgesia elicited by low-dose morphine in normal mice is blocked by ultra-low-dose naltrexone, unmasking potent opioid analgesia. Brain Res 888(1):75–82

    Article  PubMed  CAS  Google Scholar 

  25. Martin NP et al (2004) PKA-mediated phosphorylation of the beta1-adrenergic receptor promotes Gs/Gi switching. Cell Signal 16(12):1397–1403

    Article  PubMed  CAS  Google Scholar 

  26. Hill SJ, Baker JG (2003) The ups and downs of Gs- to Gi-protein switching. Br J Pharmacol 138(7):1188–1189

    Article  PubMed  CAS  Google Scholar 

  27. Malmberg AB et al (1997) Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type I regulatory subunit of cAMP-dependent protein kinase. J Neurosci 17(19):7462–7470

    PubMed  CAS  Google Scholar 

  28. Chen GD et al (2008) Calcium/calmodulin-dependent kinase II mediates NO-elicited PKG activation to participate in spinal reflex potentiation in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 294(2):R487-R493

    Article  PubMed  CAS  Google Scholar 

  29. Selbie LA, Hill SJ (1998) G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol Sci 19(3):87–93

    Article  PubMed  CAS  Google Scholar 

  30. Tell GP, Pasternak GW, Cuatrecasas P (1975) Brain and caudate nucleus adenylate cyclase: effects of dopamine, GTP, E prostaglandins and morphine. FEBS Lett 51(1):242–245

    Article  PubMed  CAS  Google Scholar 

  31. Connor M, Christie MD (1999) Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol 26(7):493–499

    Article  PubMed  CAS  Google Scholar 

  32. Aronson JK (2007) Concentration-effect and dose-response relations in clinical pharmacology. Br J Clin Pharmacol 63(3):255–257

    Article  PubMed  Google Scholar 

  33. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264(14):8171–8178

    PubMed  CAS  Google Scholar 

  34. Vetter I et al (2008) Mechanisms involved in potentiation of transient receptor potential vanilloid 1 responses by ethanol. Eur J Pain 12(4):441–454

    Article  PubMed  CAS  Google Scholar 

  35. Vetter I et al (2008) Rapid, opioid-sensitive mechanisms involved in transient receptor potential vanilloid 1 sensitization. J Biol Chem 283(28):19540–19550

    Article  PubMed  CAS  Google Scholar 

  36. Vasko MR, Campbell WB, Waite KJ (1994) Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture. J Neurosci 14(8):4987–4997

    PubMed  CAS  Google Scholar 

  37. Berg KA et al (2007) Integrins regulate opioid receptor signaling in trigeminal ganglion neurons. Neuroscience 144(3):889–897

    Article  PubMed  CAS  Google Scholar 

  38. Berg KA et al (1994) Signal transduction differences between 5-hydroxytryptamine type 2A and type 2C receptor systems. Mol Pharmacol 46(3):477–484

    PubMed  CAS  Google Scholar 

  39. Cadet P et al (2007) A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol 179(9):5839–5844

    PubMed  CAS  Google Scholar 

  40. Takahashi A et al (1999) Measurement of intracellular calcium. Physiol Rev 79(4):1089–1125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luda Diatchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gris, P., Cheng, P., Pierson, J., Maixner, W., Diatchenko, L. (2010). Molecular Assays for Characterization of Alternatively Spliced Isoforms of the Mu Opioid Receptor (MOR). In: Szallasi, A. (eds) Analgesia. Methods in Molecular Biology, vol 617. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-323-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-323-7_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-322-0

  • Online ISBN: 978-1-60327-323-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics