Skip to main content

Mitochondrial DNA Oxidative Damage and Mutagenesis in Saccharomyces cerevisiae

  • Protocol
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 554))

Abstract

Mutation of human mitochondrial DNA (mtDNA) has been linked to maternally inherited neuromuscular disorders and is implicated in more common diseases such as cancer, diabetes, and Parkinson’s disease. Mutations in mtDNA also accumulate with age and are therefore believed to contribute to aging and age-related pathology. Housed within the mitochondrial matrix, mtDNA encodes several of the proteins involved in the production of ATP via the process of oxidative phosphorylation, which involves the flow of high-energy electrons through the electron transport chain (ETC). Because of its proximity to the ETC, mtDNA is highly vulnerable to oxidative damage mediated by reactive oxygen species (ROS) such as hydrogen peroxide, superoxide, and hydroxyl radicals that are constantly produced by this system. Therefore, it is important to be able to measure oxidative mtDNA damage under normal physiologic conditions and during environmental or disease-associated stress. The budding yeast, Saccharomyces cerevisiae, is a facile and informative model system in which to study such mtDNA oxidative damage because it is a unicellular eukaryotic facultative anaerobe that is conditionally dependent on mitochondrial oxidative phosphorylation for viability. Here, we describe methods for quantifying oxidative mtDNA damage and mutagenesis in S. cerevisiae, several of which could be applied to the development of similar assays in mammalian cells and tissues. These methods include measuring the number of point mutations that occur in mtDNA with the erythromycin resistance assay, quantifying the amount of oxidative DNA damage utilizing a modified Southern blot assay, and measuring mtDNA integrity with the “petite induction” assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beckman, K.B. and Ames, B.N. (1997) Oxidative decay of DNA. J Biol Chem, 272, 19633–19636.

    Article  CAS  PubMed  Google Scholar 

  2. Lecrenier, N. and Foury, F. (2000) New features of mitochondrial DNA replication system in yeast and man. Gene, 246, 37–48.

    Article  CAS  PubMed  Google Scholar 

  3. Cooke, M.S., Evans, M.D., Dizdaroglu, M. and Lunec, J. (2003) Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J, 17, 1195–1214.

    Article  CAS  PubMed  Google Scholar 

  4. Slupphaug, G., Kavli, B. and Krokan, H.E. (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res, 531, 231–251.

    CAS  PubMed  Google Scholar 

  5. Miquel, J. (1991) An integrated theory of aging as the result of mitochondrial-DNA mutation in differentiated cells. Arch Gerontol Geriatr, 12, 99–117.

    Article  CAS  PubMed  Google Scholar 

  6. Caron, F., Jacq, C. and Rouviere-Yaniv, J. (1979) Characterization of a histone-like protein extracted from yeast mitochondria. Proc Natl Acad Sci U S A, 76, 4265–4269.

    Article  CAS  PubMed  Google Scholar 

  7. Richter, C., Park, J.W. and Ames, B.N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A, 85, 6465–6467.

    Article  CAS  PubMed  Google Scholar 

  8. Santos, J.H., Mandavilli, B.S. and Van Houten, B. (2002) Measuring oxidative mtDNA damage and repair using quantitative PCR. Methods Mol Biol, 197, 159–176.

    CAS  PubMed  Google Scholar 

  9. Yakes, F.M. and Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A, 94, 514–519.

    Article  CAS  PubMed  Google Scholar 

  10. Clayton, D.A., Doda, J.N. and Friedberg, E.C. (1974) The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci U S A, 71, 2777–2781.

    Article  CAS  PubMed  Google Scholar 

  11. Chi, N.W. and Kolodner, R.D. (1994) Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches. J Biol Chem, 269, 29984–29992.

    CAS  PubMed  Google Scholar 

  12. Foury, F. and Lahaye, A. (1987) Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. Embo J, 6, 1441–1449.

    CAS  PubMed  Google Scholar 

  13. Mason, P.A., Matheson, E.C., Hall, A.G. and Lightowlers, R.N. (2003) Mismatch repair activity in mammalian mitochondria. Nucl. Acids Res., 31, 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  14. Doudican, N.A., Song, B., Shadel, G.S. and Doetsch, P.W. (2005) Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol, 25, 5196–5204.

    Article  CAS  PubMed  Google Scholar 

  15. Pinz, K.G. and Bogenhagen, D.F. (1998) Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol Cell Biol, 18, 1257–1265.

    CAS  PubMed  Google Scholar 

  16. O'Rourke, T.W., Doudican, N.A., Mackereth, M.D., Doetsch, P.W. and Shadel, G.S. (2002) Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol Cell Biol, 22, 4086–4093.

    Article  PubMed  Google Scholar 

  17. Singh, K.K., Sigala, B., Sikder, H.A. and Schwimmer, C. (2001) Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res, 29, 1381–1388.

    Article  CAS  PubMed  Google Scholar 

  18. Bohr, V.A. (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med, 32, 804–812.

    Article  CAS  PubMed  Google Scholar 

  19. Mandavilli, B.S., Santos, J.H. and Van Houten, B. (2002) Mitochondrial DNA repair and aging. Mutat Res, 509, 127–151.

    CAS  PubMed  Google Scholar 

  20. Lenaz, G. (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta, 1366, 53–67.

    Article  CAS  PubMed  Google Scholar 

  21. Wei, Y.H. (1998) Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med, 217, 53–63.

    CAS  PubMed  Google Scholar 

  22. Wallace, D.C. (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem, 61, 1175–1212.

    Article  CAS  PubMed  Google Scholar 

  23. Ferguson, L.R. and von Borstel, R.C. (1992) Induction of the cytoplasmic 'petite' mutation by chemical and physical agents in Saccharomyces cerevisiae. Mutat Res, 265, 103–148.

    CAS  PubMed  Google Scholar 

  24. Ephrussi, B., de Margerie-Hottinguer, H. and Roman, H. (1955) Suppressiveness: a new factor in the genetic determinism of the synthesis of respiratory enzymes in yeast. Proc Natl Acad Sci U S A, 41, 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  25. You, H.J., Swanson, R.L., Harrington, C., Corbett, A.H., Jinks-Robertson, S., Senturker, S., Wallace, S.S., Boiteux, S., Dizdaroglu, M. and Doetsch, P.W. (1999) Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria. Biochemistry, 38, 11298–11306.

    Article  CAS  PubMed  Google Scholar 

  26. Alseth, I., Eide, L., Pirovano, M., Rognes, T., Seeberg, E. and Bjoras, M. (1999) The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol Cell Biol, 19, 3779–3787.

    CAS  PubMed  Google Scholar 

  27. Helbock, H.J., Beckman, K.B., Shigenaga, M.K., Walter, P.B., Woodall, A.A., Yeo, H.C. and Ames, B.N. (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci U S A, 95, 288–293.

    Article  CAS  PubMed  Google Scholar 

  28. Anson, R.M., Hudson, E. and Bohr, V.A. (2000) Mitochondrial endogenous oxidative damage has been overestimated. Faseb J, 14, 355–360.

    CAS  PubMed  Google Scholar 

  29. Coste, F., Ober, M., Carell, T., Boiteux, S., Zelwer, C. and Castaing, B. (2004) Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase. J Biol Chem, 279, 44074–44083.

    Article  CAS  PubMed  Google Scholar 

  30. Gilboa, R., Zharkov, D.O., Golan, G., Fernandes, A.S., Gerchman, S.E., Matz, E., Kycia, J.H., Grollman, A.P. and Shoham, G. (2002) Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J Biol Chem, 277, 19811–19816.

    Article  CAS  PubMed  Google Scholar 

  31. Frosina, G. (2006) Prophylaxis of oxidative DNA damage by formamidopyrimidine-DNA glycosylase. Int J Cancer, 119, 1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Radyuk, S.N., Michalak, K., Rebrin, I., Sohal, R.S. and Orr, W.C. (2006) Effects of ectopic expression of Drosophila DNA glycosylases dOgg1 and RpS3 in mitochondria. Free Radic Biol Med, 41, 757–764.

    Article  CAS  PubMed  Google Scholar 

  33. Ayala-Torres, S., Chen, Y., Svoboda, T., Rosenblatt, J. and Van Houten, B. (2000) Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods, 22, 135–147.

    Article  CAS  PubMed  Google Scholar 

  34. Shadel, G.S. (1999) Yeast as a model for human mtDNA replication. Am J Hum Genet, 65, 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  35. Potter, V.R. and Reif, A.E. (1952) Inhibition of an electron transport component by antimycin A. J Biol Chem, 194, 287–297.

    CAS  PubMed  Google Scholar 

  36. Bromme, H.J., Ebelt, H., Peschke, D. and Peschke, E. (1999) Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin. Cell Mol Life Sci, 55, 487–493.

    Article  CAS  PubMed  Google Scholar 

  37. Seo, B.B., Nakamaru-Ogiso, E., Flotte, T.R., Matsuno-Yagi, A. and Yagi, T. (2006) In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease. J Biol Chem, 281, 14250–14255.

    Article  CAS  PubMed  Google Scholar 

  38. Hixon, S.C., Ocak, A., Thomas, J.E. and Daugherty, J.P. (1980) Resistance to adriamycin cytotoxicity among respiratory-deficient mutants in yeast. Antimicrob Agents Chemother, 17, 443–449.

    CAS  PubMed  Google Scholar 

  39. Sambrook, J. and Russell, D.W. (2001) Molecular cloning: a laboratory manual of research procedures. 3rd ed. Cold Springs Harbor Laboratory Press, Cold Springs, NY.

    Google Scholar 

  40. Rodeheffer, M.S., Boone, B.E., Bryan, A.C. and Shadel, G.S. (2001) Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J. Biol. Chem., 276, 8616–8622.

    Article  CAS  PubMed  Google Scholar 

  41. Clark-Walker, G.D. and Linnane, A.W. (1967) The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells. J Cell Biol, 34, 1–14.

    Article  CAS  PubMed  Google Scholar 

  42. Cui, Z. and Mason, T.L. (1989) A single nucleotide substitution at the rib2 locus of the yeast mitochondrial gene for 21S rRNA confers resistance to erythromycin and cold-sensitive ribosome assembly. Curr Genet, 16, 273–279.

    Article  CAS  PubMed  Google Scholar 

  43. Tenson, T. and Ehrenberg, M. (2002) Regulatory nascent peptides in the ribosomal tunnel. Cell, 108, 591–594.

    Article  CAS  PubMed  Google Scholar 

  44. Evert, B.A., Salmon, T.B., Song, B., Jingjing, L., Siede, W. and Doetsch, P.W. (2004) Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. J Biol Chem, 279, 22585–22594.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, X.F., Elashvili, I., Gralla, E.B., Valentine, J.S., Lapinskas, P. and Culotta, V.C. (1992) Yeast lacking superoxide dismutase. Isolation of genetic suppressors. J Biol Chem, 267, 18298–18302.

    CAS  PubMed  Google Scholar 

  46. Meadows, K.L., Song, B. and Doetsch, P.W. (2003) Characterization of AP lyase activities of Saccharomyces cerevisiae Ntg1p and Ntg2p: implications for biological function. Nucl. Acids Res., 31, 5560–5567.

    Article  CAS  PubMed  Google Scholar 

  47. Vongsamphanh, R., Fortier, P.K. and Ramotar, D. (2001) Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability. Mol Cell Biol, 21, 1647–1655.

    Article  CAS  PubMed  Google Scholar 

  48. Bruner, S.D., Nash, H.M., Lane, W.S. and Verdine, G.L. (1998) Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr Biol, 8, 393–403.

    Article  CAS  PubMed  Google Scholar 

  49. Bessler, J.B., Torredagger, J.Z. and Zakian, V.A. (2001) The Pif1p subfamily of helicases: region-specific DNA helicases? Trends Cell Biol, 11, 60–65.

    Article  CAS  PubMed  Google Scholar 

  50. O'Rourke, T.W., Doudican, N.A., Zhang, H., Eaton, J.S., Doetsch, P.W. and Shadel, G.S. (2005) Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability. Gene, 354, 86–92.

    Article  PubMed  Google Scholar 

  51. MacAlpine, D.M., Perlman, P.S. and Butow, R.A. (1998) The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. Proc Natl Acad Sci U S A, 95, 6739–6743.

    Article  CAS  PubMed  Google Scholar 

  52. Kleff, S., Kemper, B. and Sternglanz, R. (1992) Identification and characterization of yeast mutants and the gene for a cruciform cutting endonuclease. Embo J, 11, 699–704.

    CAS  PubMed  Google Scholar 

  53. Zassenhaus, H.P. and Denniger, G. (1994) Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination. Curr Genet, 25, 142–149.

    Article  CAS  PubMed  Google Scholar 

  54. Ling, F., Morioka, H., Ohtsuka, E. and Shibata, T. (2000) A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA. Nucleic Acids Res, 28, 4956–4963.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Griffiths, L.M., Doudican, N.A., Shadel, G.S., Doetsch, P.W. (2009). Mitochondrial DNA Oxidative Damage and Mutagenesis in Saccharomyces cerevisiae . In: Stuart, J.A. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 554. Humana Press. https://doi.org/10.1007/978-1-59745-521-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-521-3_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-60-2

  • Online ISBN: 978-1-59745-521-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics