Skip to main content

Modeling Longitudinal Data, II: Standard Regression Models and Extensions

  • Protocol
  • First Online:
Clinical Epidemiology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 473))

Abstract

In longitudinal studies, the relationship between exposure and disease can be measured once or multiple times while participants are monitored over time. Traditional regression techniques are used to model outcome data when each epidemiological unit is observed once. These models include generalized linear models for quantitative continuous, discrete, or qualitative outcome responses and models for time-to-event data. When data come from the same subjects or group of subjects, observations are not independent and the underlying correlation needs to be addressed in the analysis. Under these circumstances, extended models are necessary to handle complexities related to clustered data and repeated measurements of time-varying predictors or outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E., Hsu, C. (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351, 1296–1305.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Merten, G. J., Burgess, W. P., Gray, L. V., Holleman, J. H., Roush, T. S., Kowalchuk, G. J., Bersin, R. M., Van Moore, A., Simonton, C. A. III, Rittase, R. A., Norton, H. J., Kennedy, T. P. (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: A randomized controlled trial. JAMA 291, 2328–2334.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Ravani, P., Tripepi, G., Malberti, F., Testa, S., Mallamaci, F., Zoccali, C. (2005) Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: A competing risks modeling approach. J Am Soc Nephrol 16, 2449–2455.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Heckbert, S. R., Post, W., Pearson, G. D., Arnett, D. K., Gomes, A. S., Jerosch-Herold, M., Hundley, W. G., Lima, J. A., Bluemke, D. A. (2006): Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: The Multiethnic Study of Atherosclerosis. J Am Coll Cardiol 48, 2285–2292.

    Article  PubMed  Google Scholar 

  5. 5. Heine, G. H., Reichart, B., Ulrich, C., Kohler, H., Girndt, M. (2007) Do ultrasound renal resistance indices reflect systemic rather than renal vascular damage in chronic kidney disease? Nephrol Dial Transplant 22, 163–170.

    Article  PubMed  Google Scholar 

  6. 6. Glantz, S. A., Slinker, B. K. (2001) A Primer of Applied Regression and Analysis of Variance, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  7. 7. Hosmer, D. W., Lemeshow, L. S. (2000) Introduction to logistic regression model, in Applied Logistic Regression, 2nd ed., John Wiley & Sons, New York, pp. 1–30.

    Chapter  Google Scholar 

  8. 8. Hosmer, D. W., Lemeshow, L. S. (2000) Sample size issues when fitting logistic regression. In Applied Logistic Regression, 2nd ed. John Wiley & Sons New York, pp. 339–351.

    Chapter  Google Scholar 

  9. 9. Hosmer, D. W., Lemeshow, L. S. (2000) Applied Logistic Regression, 2nd ed. John Wiley & Sons New York.

    Book  Google Scholar 

  10. 10. Dupont, W. D. (2002) Introduction to Poisson regression: Inferences on morbidity and mortality rates, in A Simple Introduction to the Analysis of Complex Data. Cambridge University Press, Cambridge, MA, pp. 269–294.

    Google Scholar 

  11. 11. Kleinbaum, D. G., Kupper, L. L., Muller, K. E., Nizam, A. (1997) Poisson regression analysis, in Applied Regression Analysis and Multivariable Methods. Duxbury Press, Belmont, CA, pp. 687–710.

    Google Scholar 

  12. 12. Hosmer, D. W., Lemeshow, L. S. (1999) Applied Survival Analysis, Regression Modelling of Time to Event Data. John Wiley & Sons, New York.

    Google Scholar 

  13. 13. Kleinbaum, D. G. (2005) Survival Analysis, a Self-Learning Text. Springer-Verlag, New York.

    Google Scholar 

  14. 14. Cox, D. R. (1972) Regression models and life-tables. J Royal Stat Soc, Series B, 34, 187–220.

    Google Scholar 

  15. 15. Bland, M., Altman, D. G. (1986) Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 1, 307–310.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Lin, D. Y., Wei, L. J. (1989) The robust inference for the Cox proportional hazards model. J Amer Stat Assoc 84, 1074–1078.

    Article  Google Scholar 

  17. 17. White, H. (1982) Maximum likelihood estimation of misspecifed models. Econometrica 50, 1–25.

    Article  Google Scholar 

  18. 18. Zeger, S. L., Liang, K.-Y. (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–130.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Therneau, T. M., Grambisch, P. M. (2000) Multiple events per subject and frailty models, in Modeling Survival Data: Extending the Cox Model. Springer-Verlag, New York, pp. 159–260.

    Google Scholar 

  20. 20. Lee, E. W., Wei, L. J., Amato, D. (1992) Cox-type regression analysis for large number of small groups of correlated failure time observations, in Survival Analysis, State of the Art. Kluwer Academic Publishers, Dodrecht, the Netherlands, pp. 237–247.

    Google Scholar 

  21. 21. Ravani, P., Tripepi, G., Malberti, F., et al. (2005) Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: A competing risks modeling approach. J Am Soc Neph 16, 2449–2455.

    Article  CAS  Google Scholar 

  22. 22. Lunn, M., McNeil, D. (1995) Applying Cox regression to competing risks. Biometrics 51, 524–532.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Wei, L. J., Lin, D. Y., Weissfeld, L. (1989) Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Amer Stat Assoc 84, 1065–1073.

    Article  Google Scholar 

  24. 24. Andersen, P. K., Gill, R. D. (1982) Cox's regression model for counting processes: A large sample study. Ann Stat 10, 1100–1120.

    Article  Google Scholar 

  25. 25. Prentice, R. L., Williams, B. J., Peterson, A. V. (1981) On the regression analysis of multivariate failure time data. Biometrika 68, 373–379.

    Article  Google Scholar 

  26. 26. Eknoyan, G., Beck, G. J., Cheung, A. K., Daugirdas, J. T., Greene, T., Kusek, J. W., Allon, M., Bailey, J., Delmez, J. A., Depner, T. A., Dwyer, J. T., Levey, A. S., Levin, N. W., Milford, E., Ornt, D. B., Rocco, M. V., Schulman, G., Schwab, S. J., Teehan, B. P., Toto, R., Hemodialysis (HEMO) Study Group. (2002) Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 347 (25), 2010–2019.

    Article  PubMed  Google Scholar 

  27. Ravani P, Tripepi G, Pecchini P, Mallamaci F, Malberti F, Zoccali C (2008) Urotensin II is an inverse predictor of death and fatal cardiovascular events in chronic kidney disease. Kidney Int 73, 95–101

    Article  PubMed  CAS  Google Scholar 

  28. 28. Huang, X., Wolfe, R. A. (2002) A frailty model for informative censoring. Biometrics 58, 510–520.

    Article  PubMed  Google Scholar 

  29. Box-Steffensmeier, J. M., De Boef, S. (2005) Repeated events survival models: The conditional frailty model. Stat Med (Epub ahead of print)

    Google Scholar 

  30. 30. Liu, L., Wolfe, R. A., Huang, X. (2004) Shared frailty models for recurrent events and a terminal event. Biometrics 60, 747–756.

    Article  PubMed  Google Scholar 

  31. 31. Mahe, C., Chevret, S. (2001) Analysis of recurrent failure times data: Should the baseline hazard be stratified? Stat Med 20, 3807–3815.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Hougaard, P. (1995) Frailty models for survival data. Lifetime Data Anal 1,255–273.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Pickles, A., Crouchley, R. (1995) A comparison of frailty models for multivariate survival data. Stat Med 14 (13), 1447–1461.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Dittrich, E., Puttinger, H., Schillinger, M., Lang, I., Stefenelli, T., Horl, W. H., Vychytil, A. (2006) Effect of radio contrast media on residual renal function in peritoneal dialysis patients—a prospective study. Nephrol Dial Transplant 21(5), 1334–1339.

    Article  PubMed  Google Scholar 

  35. 35. van Vilsteren, M. C., de Greef, M. H., Huisman, R. M. (2005) The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in the Netherlands: results of a randomized clinical trial. Nephrol Dial Transplant 20(1), 141–146.

    Article  PubMed  Google Scholar 

  36. 36. Weijnen, T. J., van Hamersvelt, H. W., Just, P. M., Struijk, D. G., Tjandra, Y. I., ter Wee, P. M., de Charro, F. T. (2003) Economic impact of extended time on peritoneal dialysis as a result of using polyglucose: The application of a Markov chain model to forecast changes in the development of the ESRD programme over time. Nephrol Dial Transplant18(2), 390–396.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Espinosa, M., Martn-Malo, A., Ojeda, R., Santamara, R., Soriano, S., Aguera, M., Aljama, P. (2004) Marked reduction in the prevalence of hepatitis C virus infection in hemodialysis patients: Causes and consequences. Amer J Kidney Dis 43 (4), 685–689.

    Article  Google Scholar 

  38. Ravani P, Parfrey P, Murphy S, Gadag V, Barrett B (2008) Clinical research of kidney diseases IV: Standard regression models. Nephrol Dial Transplant 23, 475–82

    Article  PubMed  Google Scholar 

  39. Ravani P, Parfrey P, Gadag V, Malberti F, Barrett B (2008) Clinical research of kidney diseases V: extended analytic models. Nephrol Dial Transplant 23, 1484–92

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Ravani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ravani, P., Barrett, B., Parfrey, P. (2008). Modeling Longitudinal Data, II: Standard Regression Models and Extensions. In: Barrett, B., Parfrey, P. (eds) Clinical Epidemiology. Methods in Molecular Biology™, vol 473. Humana Press. https://doi.org/10.1007/978-1-59745-385-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-385-1_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-964-2

  • Online ISBN: 978-1-59745-385-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics