Skip to main content

Diabetic Encephalopathy

  • Chapter
Diabetic Neuropathy

Part of the book series: Clinical Diabetes ((CLD))

Abstract

Diabetes and its treatment are associated with functional and structural disturbances in the brain. Acute disturbances are related to acute hypoglycemia or severe hyperglycemia and stroke. These acute metabolic and vascular insults to the brain are well known and beyond the scope of this chapter, which will focus on changes in cerebral function and structure that develop more insidiously. These changes are referred to as diabetic encephalopathy, a term that encompasses functional impairment of cognition, cerebral signal conduction, neurotransmission and synaptic plasticity, and underlying structural pathology associated with diabetes. The first section addresses animal studies, and focuses on the cellular and molecular events that underlie changes in cognition. The second section deals with studies in man and provides an overview of the nature and severity of the changes in cognition, and identifies groups of diabetic patients that are at particular risk of developing cognitive impairments (i.e., the very young and the old). In addition, neurophysiological and neuroimaging studies of diabetic patients will be considered. The final section of this chapter provides a practical guide to the clinical approach of a diabetic patient with complaints of cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Malenka RC, Nicoll RA. Long-term potentiation—a decade of progress? Science 1999;285:1870–1874.

    Article  PubMed  CAS  Google Scholar 

  2. Gispen WH, Biessels GJ. Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 2000;23:542–549.

    Article  PubMed  CAS  Google Scholar 

  3. Flood JF, Mooradian AD, Morley JE. Characteristics of learning and memory in streptozocininduced diabetic mice. Diabetes 1990;39:1391–1398.

    Article  PubMed  CAS  Google Scholar 

  4. Biessels GJ, Kamal A, Ramakers GM, et al. Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 1996;45:1259–1266.

    Article  PubMed  CAS  Google Scholar 

  5. Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 1998;800:125–135.

    Article  PubMed  CAS  Google Scholar 

  6. Li ZG, Zhang W, Grunberger G, Sima AA. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 2002;946:221–231.

    Article  PubMed  CAS  Google Scholar 

  7. Li XL, Aou S, Hori T, Oomura Y. Spatial memory deficit and emotional abnormality in OLETF rats. Physiol Behav 2002;75:15–23.

    Article  PubMed  CAS  Google Scholar 

  8. Chabot C, Massicotte G, Milot M, Trudeau F, Gagne J. Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats. Brain Res 1997;768:249–256.

    Article  PubMed  CAS  Google Scholar 

  9. Kamal A, Biessels GJ, Urban IJA, Gispen WH. Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression. Neuroscience 1999;90:737–745.

    Article  PubMed  CAS  Google Scholar 

  10. Candy SM, Szatkowski MS. Neuronal excitability and conduction velocity changes in hippocampal slices from streptozotocin-treated diabetic rats. Brain Res 2000;863:298–301.

    Article  PubMed  CAS  Google Scholar 

  11. Trudeau F, Gagnon S, Massicotte G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol 2004;490:177–186.

    Article  PubMed  CAS  Google Scholar 

  12. Gagne J, Milot M, Gelinas S, et al. Binding properties of glutamate receptors in streptozotocininduced diabetes in rats. Diabetes 1997;46:841–846.

    Article  PubMed  CAS  Google Scholar 

  13. Di Luca M, Ruts L, Gardoni F, Cattabeni F, Biessels GJ, Gispen WH. NMDA receptor subunits are modified transcriptionally and post-translationally in the brain of streptozotocindiabetic rats. Diabetologia 1999;42:693–701.

    Article  PubMed  Google Scholar 

  14. Biessels GJ, Cristino NA, Rutten G, Hamers FPT, Erkelens DW, Gispen WH. Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats: course of development and effects of insulin treatment. Brain 1999;122:757–768.

    Article  PubMed  Google Scholar 

  15. Sima AA, Zhang WX, Cherian PV, Chakrabarti S. Impaired visual evoked potential and primary axonopathy of the optic nerve in the diabetic BB/W-rat. Diabetologia 1992;35:602–607.

    Article  PubMed  CAS  Google Scholar 

  16. Jakobsen J, Sidenius P, Gundersen HJ, Osterby R. Quantitative changes of cerebral neocortical structure in insulin-treated long-term streptozocin-induced diabetes in rats. Diabetes 1987;36:597–601.

    Article  PubMed  CAS  Google Scholar 

  17. Mukai N, Hori S, Pomeroy M. Cerebral lesions in rats with streptozotocin-induced diabetes. Acta Neuropathol (Berl) 1980;51:79–84.

    Article  CAS  Google Scholar 

  18. Magarinos AM, Mcewen BS. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA 2000;97:11,056-11,061.

    Article  Google Scholar 

  19. Sima AAF, Kamiya H, Li ZG. Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol 2004;490:187–197.

    Article  PubMed  CAS  Google Scholar 

  20. Sredy J, Sawicki DR, Notvest RR. Polyol pathway activity in nervous tissues of diabetic and galactose-fed rats: effect of dietary galactose withdrawal or tolrestat intervention therapy. J Diabetes Complications 1991;5:42–47.

    Article  CAS  Google Scholar 

  21. Knudsen GM, Jakobsen J, Barry DI, Compton AM, Tomlinson DR. Myo-inositol normalizes decreased sodium permeability of the blood-brain barrier in streptozotocin diabetes. Neuroscience 1989;29:773–777.

    Article  PubMed  CAS  Google Scholar 

  22. Vlassara H, Brownlee M, Cerami A. Excessive non enzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes 1983;32: 670–674.

    Article  PubMed  CAS  Google Scholar 

  23. Ryle C, Leow CK, Donaghy M. Nonenzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve 1997;20:577–584.

    Article  PubMed  CAS  Google Scholar 

  24. Mooradian AD. The antioxidative potential of cerebral microvessels in experimental diabetes mellitus. Brain Res 1995;671:164–169.

    Article  PubMed  CAS  Google Scholar 

  25. Reagan LP, Magarinos AM, Yee DK, et al. Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress. Brain Res 2000;862:292–300.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar JS, Menon VP. Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism 1993;42:1435–1439.

    Article  PubMed  CAS  Google Scholar 

  27. Makar TK, Rimpel-Lamhaouar K, Abraham DG, Gokhale VS, Cooper AJL. Antioxidant defense systems in the brains of type II diabetic mice. J Neurochem 1995;65:287–291.

    PubMed  CAS  Google Scholar 

  28. Bhardwaj SK, Sandhu SK, Sharma P, Kaur G. Impact of diabetes on CNS: role of signal transduction cascade. Brain Res Bull 1999;49:155–162.

    Article  PubMed  CAS  Google Scholar 

  29. Jakobsen J, Nedergaard M, Aarslew Jensen M, Diemer NH. Regional brain glucose metabolism and blood flow in streptozocininduced diabetic rats. Diabetes 1990;39:437–440.

    Article  PubMed  CAS  Google Scholar 

  30. Manschot SM, Biessels GJ, Cameron NE, et al. Angiotensin converting enzyme inhibition partially prevents deficits in water maze performance, hippocampal synaptic plasticity and cerebral blood flow in streptozotocin-diabetic rats. Brain Res 2003;966:274–282.

    Article  PubMed  CAS  Google Scholar 

  31. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 2000;24:855–872.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao W, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 2001;177:125–134.

    Article  PubMed  CAS  Google Scholar 

  33. Gasparini L, Netzer WJ, Greengard P, Xu H. Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 2002;23:288–293.

    Article  PubMed  CAS  Google Scholar 

  34. Frolich L, Blum-Degen D, Bernstein HG, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 1998;105:423–438.

    Article  PubMed  CAS  Google Scholar 

  35. Hoyer S. Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 1998;105:415–422.

    Article  PubMed  CAS  Google Scholar 

  36. Ryan CM. Memory and metabolic control in children. Diabetes Care 1999;22:1239–1241.

    Article  PubMed  CAS  Google Scholar 

  37. Northam EA, Anderson PJ, Jacobs R, Hughes M, Warne GL, Werther GA. Neuropsychological profiles of children with type 1 diabetes 6 years after disease onset. Diabetes Care 2001;24:1541–1546.

    Article  PubMed  CAS  Google Scholar 

  38. Bjorgaas M, Gimse R, Vik T, Sand T. Cognitive function in Type 1 diabetic children with and without episodes of severe hypoglycaemia. Acta Paediatr 1997;86:148–153.

    Article  PubMed  CAS  Google Scholar 

  39. Kaufman FR, Epport K, Engilman R, Halvorson M. Neurocognitive functioning in children diagnosed with diabetes before age 10 years. J Diabetes Complications 1999;13:31–38.

    Article  PubMed  CAS  Google Scholar 

  40. Schoenle EJ, Schoenle D, Molinari L, Largo RH. Impaired intellectual development in children with Type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia 2002;45:108–114.

    Article  PubMed  CAS  Google Scholar 

  41. Hershey T, Bhargava N, Sadler M, White NH, Craft S. Conventional versus intensive diabetes therapy in children with type 1 diabetes: effects on memory and motor speed. Diabetes Care 1999;22:1318–1324.

    Article  PubMed  CAS  Google Scholar 

  42. McCarthy AM, Lindgren S, Mengeling MA, Tsalikian E, Engvall JC. Effects of diabetes on learning in children. Pediatrics 2002;109:E9.

    Article  PubMed  Google Scholar 

  43. Brands AMA, Biessels GJ, De Haan EHF, Kappelle LJ, Kessels RPC. The effects of Type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 2005;28:726–735.

    Article  PubMed  Google Scholar 

  44. Ryan CM, Williams TM, Finegold DN, Orchard TJ. Cognitive dysfunction in adults with type 1 (insulin-dependent) diabetes mellitus of long duration: effects of recurrent hypoglycaemia and other chronic complications. Diabetologia 1993;36:329–334.

    Article  PubMed  CAS  Google Scholar 

  45. Ferguson SC, Blane A, Perros P, et al. Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes 2003;52:149–156.

    Article  PubMed  CAS  Google Scholar 

  46. Ryan CM, Geckle MO, Orchard TJ. Cognitive efficiency declines over time in adults with Type 1 diabetes: effects of micro-and macrovascular complications. Diabetologia 2003;46:940–948.

    Article  PubMed  CAS  Google Scholar 

  47. The Diabetes Control and Complications Study Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.

    Article  Google Scholar 

  48. Austin EJ, Deary IJ. Effects of repeated hypoglycemia on cognitive function: a psycho-metrically validated reanalysis of the Diabetes Control and Complications Trial data. Diabetes Care 1999;22:1273–1277.

    Article  PubMed  CAS  Google Scholar 

  49. Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 2004;26:1044–1080.

    Article  PubMed  Google Scholar 

  50. Stewart R, Liolitsa D. Type 2 diabetes mellitus, cognitive impairment and dementia. Diabet Med 1999;16:93–112.

    Article  PubMed  CAS  Google Scholar 

  51. Kalmijn S, Foley D, White L, et al. Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men. The Honolulu-Asia aging study. Arterioscler Thromb Vasc Biol 2000;20:2255–2260.

    PubMed  CAS  Google Scholar 

  52. Strachan MWJ, Deary IJ, Ewing FME, Frier BM. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 1997;20:438–445.

    Article  PubMed  CAS  Google Scholar 

  53. Perlmuter LC, Nathan DM, Goldfinger SH, Russo PA, Yates J, Larkin M. Triglyceride levels affect cognitive function in noninsulin-dependent diabetics. J Diabet Complications 1988;2:210–213.

    Article  PubMed  CAS  Google Scholar 

  54. Manschot SM, Brands AM, van der GJ, Kessels RP, Algra A, Kapppelle LJ, Biessels GJ. Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 2006;55:1106–1113.

    Article  PubMed  CAS  Google Scholar 

  55. Biessels GJ, Van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol 2002;441:1–14.

    Article  PubMed  CAS  Google Scholar 

  56. Kalmijn S, Feskens EJM, Launer LJ, Stijnen T, Kromhout D. Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men. Diabetologia 1995;38:1096–1102.

    Article  PubMed  CAS  Google Scholar 

  57. Sinclair AJ, Girling AJ, Bayer AJ. Cognitive dysfunction in older subjects with diabetes mellitus: impact on diabetes self-management and use of care services. All Wales Research into Elderly (AWARE) Study. Diabetes Res Clin Pract 2000;50:203–212.

    Article  PubMed  CAS  Google Scholar 

  58. Grigsby AB, Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. Prevalence of anxiety in adults with diabetes. A systematic review. J Psychosom Res 2002;53:1053–1060.

    Article  PubMed  Google Scholar 

  59. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 2001;24:1069–1078.

    Article  PubMed  CAS  Google Scholar 

  60. de Groot M, Anderson R, Freedland KE, Clouse RE, Lustman PJ. Association of depression and diabetes complications: a meta-analysis. Psychosom Med 2001;63:619–630.

    PubMed  Google Scholar 

  61. Lustman PJ, Anderson RJ, Freedland KE, de Groot M, Carney RM, Clouse RE. Depression and poor glycemic control: a meta-analytic review of the literature. Diabetes Care 2000;23:934–942.

    Article  PubMed  CAS  Google Scholar 

  62. Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 2002;1:13–21.

    Article  PubMed  Google Scholar 

  63. Frisoni GB, Scheltens P, Galluzzi S, et al. Neuroimaging tools to rate regional atrophy, subcortical cerebrovascular disease, and regional cerebral blood flow and metabolism: consensus paper of the EADC. J Neurol Neurosurg Psychiatry 2003:74:1371–1381.

    Article  PubMed  CAS  Google Scholar 

  64. Pantoni L, Leys D, Fazekas F, et al. Role of white matter lesions in cognitive impairment of vascular origin. Alzheimer Dis Assoc Disord 1999;13(Suppl 3):S49–S54.

    Article  PubMed  Google Scholar 

  65. Reske-Nielsen E, Lundbaek K, Rafaelsen OJ. Pathological changes in the central and peripheral nervous system of young long-term diabetics. Diabetologia 1965;1:233–241.

    Article  Google Scholar 

  66. Johnson PC, Brenedel K, Meezan E. Thickened cerebral cortical capillary basement membranes in diabetics. Arch Pathol Lab Med 1982;106:214–217.

    PubMed  CAS  Google Scholar 

  67. Peress NS, Kane WC, Aronson SM. Central nervous system findings in a tenth decade autopsy population. Prog Brain Res 1973;40:473–483.

    PubMed  CAS  Google Scholar 

  68. Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002;51:1256–1262.

    Article  PubMed  CAS  Google Scholar 

  69. Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004;53:474–481.

    Article  PubMed  CAS  Google Scholar 

  70. Heitner J, Dickson D. Diabetics do not have increased Alzheimer-type pathology compared with age-matched control subjects. A retrospective postmortem immunocytochemical and histofluorescent study. Neurology 1997;49:1306–1311.

    PubMed  CAS  Google Scholar 

  71. Dejgaard A, Gade A, Larsson H, Balle V, Parving A, Parving HH. Evidence for diabetic encephalopathy. Diabetic Med 1991;8:162–167.

    Article  PubMed  CAS  Google Scholar 

  72. Yousem DM, Tasman WS, Grossman RI. Proliferative retinopathy: absence of white matter lesions at MR imaging. Radiology 1991;179:229–230.

    PubMed  CAS  Google Scholar 

  73. Lunetta M, Damanti AR, Fabbri G, Lombardo M, Di Mauro M, Mughini L. Evidence by magnetic resonance imaging of cerebral alterations of atrophy type in young insulindependent diabetic patients. J Endocrinol Invest 1994;17:241–245.

    PubMed  CAS  Google Scholar 

  74. Perros P, Best JJK, Deary IJ, Frier BM, Sellar RJ. Brain abnormalities demonstrated by magnetic resonance imaging in adult IDDM patients with and without a history of recurrent severe hypoglycemia. Diabetes Care 1997;20:1013–1018.

    Article  PubMed  CAS  Google Scholar 

  75. Vermeer SE, den Heijer T, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MM. Incidence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 2003;34:392–396.

    Article  PubMed  Google Scholar 

  76. Arauz A, Murillo L, Cantu C, Barinagarrementeria F, Higuera J. Prospective study of single and multiple lacunar infarcts using magnetic resonance imaging: risk factors, recurrence, and outcome in 175 consecutive cases. Stroke 2003;34:2453–2458.

    Article  PubMed  Google Scholar 

  77. Manolio TA, Kronmal RA, Burke GL, et al. Magnetic resonance abnormalities and cardiovascular disease in older adults. The Cardiovascular Health Study. Stroke 1994;25:318–327.

    PubMed  CAS  Google Scholar 

  78. Schmidt R, Fazekas F, Kleinert G, et al. Magnetic resonance imaging signal hyperintensities in the deep and subcortical white matter. A comparative study between stroke patients and normal volunteers. Arch Neurol 1992;49:825–827.

    PubMed  CAS  Google Scholar 

  79. Schmidt R, Launer LJ, Nilsson LG, et al. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes 2004;53:687–692.

    Article  PubMed  CAS  Google Scholar 

  80. den Heijer T, Vermeer SE, van Dijk EJ, et al. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 2003;46:1604–1610.

    Article  Google Scholar 

  81. Soininen H, Puranen M, Helkala EL, Laakso M, Riekkinen PJ. Diabetes mellitus and brain atrophy: a computed tomography study in an elderly population. Neurobiol Aging 1992;13:717–721.

    Article  PubMed  CAS  Google Scholar 

  82. Biessels GJ, Manschot SM. The diabetic encephalopathy study group. Vascular risk factors for cognitive dysfunction in type 2 diabetes mellitus: study design and preliminary data. J Neurol 2003;250(S2):P718. Abstract.

    Google Scholar 

  83. Convit A, Wolf OT, Tarshish C, de Leon MJ. Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci USA 2003;100:2019–2022.

    Article  PubMed  CAS  Google Scholar 

  84. Donald MW, Williams Erdahl DL, Surridge DHC, et al. Functional correlates of reduced central conduction velocity in diabetic subjects. Diabetes 1984;33:627–633.

    Article  PubMed  CAS  Google Scholar 

  85. Di Mario U, Morano S, Valle E, Pozzessere G. Electrophysiological alterations of the central nervous system in diabetes mellitus. Diabetes Metab Rev 1995;11:259–278.

    Article  PubMed  Google Scholar 

  86. Moreo G, Mariani E, Pizzamiglio G, Colucci GB. Visual evoked potentials in NIDDM: A longitudinal study. Diabetologia 1995;38:573–576.

    Article  PubMed  CAS  Google Scholar 

  87. Ziegler O, Guerci B, Algan M, Lonchamp P, Weber M, Drouin P. Improved visual evoked potential latencies in poorly controlled diabetic patients after short-term strict metabolic control. Diabetes Care 1994;17:1141–1147.

    Article  PubMed  CAS  Google Scholar 

  88. Parisi V, Uccioli L. Visual electrophysiological responses in persons with type 1 diabetes. Diabetes Metab Res Rev 2001;17:12–18.

    Article  PubMed  CAS  Google Scholar 

  89. Nakamura R, Noritake M, Hosoda Y, Kamakura K, Nagata N, Shibasaki H. Somatosensory conduction delay in central and peripheral nervous system of diabetic patients. Diabetes Care 1992;15:532–535.

    Article  PubMed  CAS  Google Scholar 

  90. Gupta PR, Dorfman LJ. Spinal somatosensory conduction in diabetes. Neurology 1981;31:841–845.

    PubMed  CAS  Google Scholar 

  91. Bax G, Lelli S, Grandis U, Cospite AM, Paolo N, Fedele D. Early involvement of central nervous system type I diabetic patients. Diabetes Care 1995;18:559–562.

    Article  PubMed  CAS  Google Scholar 

  92. Mooradian AD, Perryman K, Fitten J, Kavonian GD, Morley JE. Cortical function in elderly non-insulin dependent diabetic patients. Behavioral and electrophysiologic studies. Arch Intern Med 1988;148:2369–2372.

    Article  PubMed  CAS  Google Scholar 

  93. Pozzessere G, Valle E, de-Crignis S, et al. Abnormalities of cognitive functions in IDDM revealed by P300 event-related potential analysis. Comparison with short-latency evoked potentials and psychometric tests. Diabetes 1991;40:952–958.

    Article  PubMed  CAS  Google Scholar 

  94. Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol 1992;9:456–479.

    Article  PubMed  CAS  Google Scholar 

  95. Reichard P, Britz A, Rosenqvist U. Intensified conventional insulin treatment and neuropsychological impairment. BMJ 1991;303:1439–1442.

    PubMed  CAS  Google Scholar 

  96. Naor M, Steingruber HJ, Westhoff K, Schottenfeld-Naor Y, Gries AF. Cognitive function in elderly non-insulin-dependent diabetic patients before and after inpatient treatment for metabolic control. J Diabetes Complications 1997;11:40–46.

    Article  PubMed  CAS  Google Scholar 

  97. Gradman TJ, Laws A, Thompson LW, Reaven GM. Verbal learning and/or memory improves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus. J Am Geriatr Soc 1993;41:1305–1312.

    PubMed  CAS  Google Scholar 

  98. Meneilly GS, Cheung E, Tessier D, Yakura C, Tuokko H. The effect of improved glycemic control on cognitive functions in the elderly patient with diabetes. J Gerontol 1993;48:M117–M121.

    PubMed  CAS  Google Scholar 

  99. Wu JH, Haan MN, Liang J, Ghosh D, Gonzalez HM, Herman WH. Impact of antidiabetic medications on physical and cognitive functioning of older Mexican Americans with diabetes mellitus: a population-based cohort study. Ann Epidemiol 2003;13:369–376.

    Article  PubMed  Google Scholar 

  100. Mussell M, Hewer W, Kulzer B, Bergis K, Rist F. Effects of improved glycaemic control maintained for 3 months on cognitive function in patients with Type 2 diabetes. Diabet Med 2004;21:1253–1256.

    Article  PubMed  CAS  Google Scholar 

  101. Areosa Sastre A, Grimley Evans V. Effect of the treatment of Type II diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev 2003;CD003804.

    Google Scholar 

  102. Berk-Planken I, de K, I Stolk R, Jansen H, Hoogerbrugge N. Atorvastatin, diabetic dyslipidemia, and cognitive functioning. Diabetes Care 2002;25:1250–1251.

    Article  PubMed  Google Scholar 

  103. Sandeep TC, Yau JL, MacLullich AM, et al. 11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proc Natl Acad Sci USA 2004;101:6734–6739.

    Article  PubMed  CAS  Google Scholar 

  104. Watson GS, Reger MA, Cholerton BA, et al. Rosiglitazone preserves cognitive functions in patients with early Alzheimer’s disease. Neurobiol Aging 2004;25(S2):S83 Abstract.

    Article  Google Scholar 

  105. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 1969;9:179–186.

    PubMed  CAS  Google Scholar 

  106. Zakzanis KK. Statistics to tell the truth, the whole truth, and nothing but the truth. Formulae, illustrative numerical examples, and heuristic interpretation of effect size analyses for neuropsychological researchers. Arch Clin Neuropsychol 2001;16:653–667.

    Article  PubMed  CAS  Google Scholar 

  107. Yoshitake T, Kiyohara Y, Kato I, et al. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: the Hisayama Study. Neurology 1995;45:1161–1168.

    PubMed  CAS  Google Scholar 

  108. Leibson CL, Rocca WA, Hanson VA, et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 1997;145:301–308.

    PubMed  CAS  Google Scholar 

  109. Ott A, Stolk RP, Van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999;53:1937–1942.

    PubMed  CAS  Google Scholar 

  110. Mac Knight C, Rockwood K, Awalt E, McDowell I. Diabetes mellitus and the risk of dementia, Alzheimer’s disease and vascular cognitive impairment in the Canadian Study of Health and Aging. Dement Geriatr Cogn Disord 2002;14:77–83.

    Article  Google Scholar 

  111. Hassing LB, Johansson B, Nilsson SE, et al. Diabetes mellitus is a risk factor for vascular dementia, but not for Alzheimer’s disease: a population-based study of the oldest old. Int Psychogeriatr 2002;14:239–248.

    Article  PubMed  Google Scholar 

  112. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 2004;61:661–666.

    Article  PubMed  Google Scholar 

  113. Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 2004;63:1181–1186.

    PubMed  CAS  Google Scholar 

  114. Lezak MD, Howieson DB, Loring DW. Neuropsychological Assessment. New York: Oxford Press, 2004.

    Google Scholar 

  115. Ryan C, Vega A, Drash A. Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics 1985;75:921–927.

    PubMed  CAS  Google Scholar 

  116. Scheltens P, Barkhof F, Leys D, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 1993;114:7–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Biessels, G.J. (2007). Diabetic Encephalopathy. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-311-0_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-626-9

  • Online ISBN: 978-1-59745-311-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics