Skip to main content

Immobilization of Enzymes on Magnetic Particles

  • Protocol
Immobilization of Enzymes and Cells

Abstract

Magnetic particles have been increasingly used as carriers for binding proteins, enzymes, and drugs. Such immobilization procedures for proteins, enzymes, antibodies, and other biologically active compounds have a major impact in different areas of biomedicine and biotechnology. The immobilized biomolecules can be used directly for a bioassay or as affinity ligands to capture or modify target molecules or cells. This chapter details immobilization procedures for proteins and enzymes onto various magnetically responsive carriers such as naked magnetic particles, carboxyl-modified microspheres, and aminomodified microspheres using direct binding procedure in the presence of coupling agents such as carbodiimide. The physical and chemical properties of freshly prepared magnetic particles were determined by magnetic measurements (VSM magnetometer), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The extent of immobilization and enzyme activities were spectrophotometrically measured in order to find the retained activity after immobilization onto magnetic particles. The binding of proteins and enzymes was also confirmed by TEM microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Cheng-we W., Jin-gang L., and Wen-chien L. (1998) Protein and enzyme immobilization on non-porous microspheres of polystyrene. Biotechnol. Appl. Biochem. 27, 225–230.

    Google Scholar 

  2. Maa Y. F. and Horvath, C. J. (1988) Rapid analysis of proteins and peptides by reversed-phase chromatography with polymeric micropellicular sorbents. J. Chromatogr. A. 445(1), 71–86.

    Article  CAS  Google Scholar 

  3. Rounds M. A. and Regnier F. E. (1988) Synthesis of a non-porous, polystyrenebased strong anion-exchange packing material and its application to fast highperformance liquid chromatography of proteins. J. Chromatogr. A. 443, 73–83.

    Article  CAS  Google Scholar 

  4. Wongyai S., Varga J. M., and Bonn G. K. J. (1991) High-performance affinity chromatography of immunoglobulin E on a column of dinitrophenylamino acids covalently bound to a highly cross-linked polymeric micropellicular support. J. Chromatogr. A. 536, 155–164.

    Article  CAS  Google Scholar 

  5. Tuncel A., Denizli A., Purvis D., Lowe C. R., and Piskin E. (1993) Cibacron Blue F3G-A-attached monosize poly(vinyl alcohol)-coated polystyrene microspheres for specific albumin adsorption. J. Chromatogr. A. 634, 161–168.

    Article  CAS  Google Scholar 

  6. Lee W. C., Lin C. H., Ruaan R. C., and Hsu K. Y. (1995) High-performance affinity chromatography of proteins on non-porous polystyrene beads. J. Chromatogr. A. 704, 307–314.

    Article  CAS  Google Scholar 

  7. Smidsrod O., and Skjak-Braek G. (1990) Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78.

    Article  CAS  Google Scholar 

  8. Saiyed Z. M., Telang S. D., and Ramchand C. N. (2003) Application of magnetic techniques in the field of drug discovery and biomedicine. BioMagn. Res. Technol. 1, 2.

    Article  Google Scholar 

  9. Ramchand C. N., Pande P., Kopcansky P., and Mehta R. V. (2001) Application of magnetic fluids in medicine and biotechnology. Indian J. Pure Appl. Phys. 39, 683–686.

    CAS  Google Scholar 

  10. Mosbach K., and Andersson L. (1977) Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270, 259–261.

    Article  CAS  Google Scholar 

  11. Safarikova M., Roy I., Gupta M. N., and Safarik I. (2003) Magnetic alginate microparticles for purification of a-amylases. J. Biotechnol. 105, 255–260.

    Article  CAS  Google Scholar 

  12. Sinclair B. (1998) To bead or not to bead: applications of magnetic bead technology. Scientist 12(13), 17.

    Google Scholar 

  13. Safarik I., and Safarikova M. (2002) Magnetic nanoparticles and biosciences. Mon. Chem. 133, 737–759.

    CAS  Google Scholar 

  14. Miltenyi Biotec. Available athttp://www.miltenyibiotec.com.

  15. Polysciences Inc.Available at http://www.polysciences.com..

  16. Abudiab T. and Beitle, R. R. Jr. (1998) Preparation of magnetic immobilized metal affinity separation media and its use in the isolation of proteins. J. Chromatogr. A. 795(2), 211–217.

    Article  CAS  Google Scholar 

  17. Sinclair B. (2000) Honing your cloning: new cloning systems give protein expression studies a boost. Scientist 14(16), 29.

    Google Scholar 

  18. QIAGEN Inc.Available athttp://www.qiagen.com/literature/qiagennews/0498/984ninta.pdf.

  19. Safarik I. and Safarikova, M. (2000) Biologically active compounds and xenobiotics: magnetic affinity separations. In: Encyclopedia of Separation Science (Wilson I. D., Adlard T. R., Poole C. F., and Cool M., eds.) AcademicPress, London, pp. 2163–2170.

    Google Scholar 

  20. Mehta R. V., Upadhyay R. V., Charles S. W., and Ramchand C. N. (1997) Direct binding of protein to magnetic particles. Biotechnol. Tech. 11(7), 493–496.

    Article  CAS  Google Scholar 

  21. Bacri J., Perzynski R., and Salin D. (1990) Ionic ferrofluids: a crossing of chemistry and physics. J. Magn. Magn. Mater. 85, 27–32.

    Article  CAS  Google Scholar 

  22. Koneracka M., Kopcansky P., Timko M., Ramchand C. N., de Sequeira A., and Trevan M. (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J. Mol. Catal. B-Enzym. 689, 1–6.

    Google Scholar 

  23. Chantrell R. W. Popplewell J., and Charles S.W. (1978) Measurements particle size distribution parameters in ferrofluids. IEEE Trans. Magn. Mag. 14, 975–977.

    Article  Google Scholar 

  24. Lacava B. M., Azevedo R. B. Silva L. P., et al. (2000) Particle sizing of magnetite-based magnetic fluid using atomic force microscopy: A comparative study with electron micros-copy and birefringence. Appl. Phys. Lett. 77, 1876–1878

    Article  CAS  Google Scholar 

  25. Bangs Laboratories Inc.Available ar [http://www.bangslabs.com] and [http://www.bangslabs.com/technotes/205.pdf].

  26. Slavik K. and Smetana R. (1952) Chem. Listy 46, 649.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Koneracká, M. et al. (2006). Immobilization of Enzymes on Magnetic Particles. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics