Skip to main content

Part of the book series: Contemporary Endocrinology ((COE,volume 21))

Abstract

Nitric oxide (NO) is traditionally known as a molecule released from the vascular endothelium that plays an important role in regulating vascular tone (1). However, in the heart, NO released from the vascular endothelium is involved in a number of important paracrine functions independent of vascular tone, as shown in Fig. 1. This chapter discusses the influence of NO on myocardial blood flow, substrate utilization, and oxygen consumption. The degree to which NO influences the contractility of the heart will also be discussed. NO has also been implicated in the control of apoptosis (2),which may have important clinical implications (3) in terms of the pathogenesis of heart failure (HF). As will be demonstrated in this chapter, NO has many more roles in the heart than simply dilating blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharm Rev 1991; 43: 109 - 142.

    PubMed  CAS  Google Scholar 

  2. Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase3-like activity via two distinct mechanisms. J Biol Chem 1997;272:31, 138-31, 148

    Google Scholar 

  3. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P. Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 1997; 73: 771 - 787.

    Google Scholar 

  4. Palmer RMJ, Moncada S. Novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endotehlial cells. Biochem Biophys Res Commun 1989; 158: 348 - 352.

    Article  PubMed  CAS  Google Scholar 

  5. Bredt DS, Snyder SH. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 1990; 87: 682 - 685.

    Article  PubMed  CAS  Google Scholar 

  6. Nakane M, Schmidt HH, Pollock JS, Forstermann U, Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 1993; 316: 17 - 180.

    Article  Google Scholar 

  7. Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci USA 1991; 88: 7773 - 7777.

    Article  PubMed  CAS  Google Scholar 

  8. Bandaletova T, Brouet I, Bartsch H, Sugimura T, Esumi H, Ohshima H. Immunohistochemical localization of an inducible form of nitric oxide synthase in various organs of rats treated with propionibacterium-acnes and lipopolysaccharide. Apmis 1993; 101: 330 - 336.

    Article  PubMed  CAS  Google Scholar 

  9. Pollock JS, Nakane M, Buttery LK, Martinez A, Springall D, Polak JM, Forstermann U, Murad F. Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies. Am J Physiol 1993; 265: C1379 - C1387.

    PubMed  CAS  Google Scholar 

  10. Ursell PC, Mayes M. Anatomic distribution of nitric oxide synthase in the heart. Int J Cardiol 1995; 50: 217 - 223.

    Article  PubMed  CAS  Google Scholar 

  11. Andries LJ, Brutsaert DL, Sys SU. Nonuniformity of endothelial constitutive nitric oxide synthase distribution in cardiac endothelium. Circ Res 1998; 82: 195 - 203.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka K, Hassall CJ, Burnstock G. Distribution of intracardiac neurons and nerve terminals that contain a marker for nitric oxide, NADPH-diaphorase, in the guinea-pig heart. Cell Tissue Res 1993; 273: 293 - 300.

    Article  PubMed  CAS  Google Scholar 

  13. Ursell PC, Mayes M. Majority of nitric oxide synthase in pig heart is vascular and not neural. Cardiovasc Res 1993; 27: 1920 - 1924.

    Article  PubMed  CAS  Google Scholar 

  14. Ballignad J-L, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T, Smith TW. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 1993; 91: 2314 - 2319.

    Article  Google Scholar 

  15. Hibbs JB, Vavrin Z, Taintor RR. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 1987; 138: 550 - 565.

    PubMed  CAS  Google Scholar 

  16. Stuehr DJ, Griffith OW. Mammalian nitric oxide synthases. Adv Enzymol 1992; 65: 287 - 346.

    PubMed  CAS  Google Scholar 

  17. Stuehr DJ, Kwon NS, Nathan CF, Griffith OW, Feldman PL, Wiseman J. N°-hydrohy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J Biol Chem 1991; 266: 6259 - 6263.

    PubMed  CAS  Google Scholar 

  18. Abu-soud HM, Stuehr DJ. Nitric oxide synthesis reveals a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci USA 1993;90:10, 769-10, 772.

    Google Scholar 

  19. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994; 298: 249 - 258.

    PubMed  CAS  Google Scholar 

  20. Koller A, Kaley G. Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am J Physiol 1991; 260 (Heart Circ Physiol 29): H862 - H868.

    PubMed  CAS  Google Scholar 

  21. Lamontagne D, Pohl U, Busse R. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 1992; 70: 123 - 130.

    Article  PubMed  CAS  Google Scholar 

  22. Cho HJ, Xie QW, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Nathan C. Calmodulin as a tightly bound subunit of calcium-, calmodulin-independent nitric oxide synthase. J Exp Med 1992; 176: 599 - 604.

    Article  PubMed  CAS  Google Scholar 

  23. Knowles RG, Moncada S. Nitric oxide as a signal in blood vessels. Trends Biochem Sci 1992; 17: 399 - 402.

    Article  PubMed  CAS  Google Scholar 

  24. Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3’:5’-cyclic monophosphate level in various tissue preparations. Proc Natl Acac Sci USA 1977; 74: 3203 - 3207.

    Article  CAS  Google Scholar 

  25. Ignarro LJ, Degnan JN, Baricos WH, Kadowitz PJ, Wolin MS. Activation of purified guanylate cyclase by nitric oxide requires heme: comparison of the heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochem Biophys Acta 1982; 718: 49 - 59.

    Article  PubMed  CAS  Google Scholar 

  26. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 1993; 90: 7240 - 7244.

    Article  PubMed  CAS  Google Scholar 

  27. Stuehr DJ, Nathan CF. Nitric oxide: a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 1989; 169: 1543 - 1555.

    Article  PubMed  CAS  Google Scholar 

  28. Granger DL, Lehninger AL. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. J Cell Biol 1982; 95: 527 - 535.

    Article  PubMed  CAS  Google Scholar 

  29. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 1994; 356: 295 - 298.

    Article  PubMed  CAS  Google Scholar 

  30. Rees DD, Palmer RMJ, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 1990; 101: 746 - 752.

    Article  PubMed  CAS  Google Scholar 

  31. Rees DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 1989; 86: 3375 - 3378.

    Article  PubMed  CAS  Google Scholar 

  32. Aisaka K, Gross SS, Griffith OW, Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun 1989; 160: 881 - 886.

    Article  PubMed  CAS  Google Scholar 

  33. Whittle BJR, Lopez-Belemonte J, Rees DD. Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P, and endothelin in the rat by a specific inhibitor of nitric oxide formation. Br J Pharmacol 1989; 98: 646 - 652.

    Article  PubMed  CAS  Google Scholar 

  34. Chu A, Lin CC, Chanbers DE, Moncada S, Cobb FE. Effects of inhibition of nitric oxide on basal formation and endothelium dependent responses of coronary arteries in awake dogs. J Clin Invest 1991; 87: 1964 - 1968.

    Article  PubMed  CAS  Google Scholar 

  35. Shen W, Lundborg M, Wang J, Stewart JM, Xu X, Ochoa M, Hintze TH. Role of EDRF in the regulation of regional blood flow and vascular resistance at rest and during exercise in conscious dogs. J Appl Physiol 1994; 77: 165 - 172.

    PubMed  CAS  Google Scholar 

  36. Valiance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 334: 997 - 1000.

    Article  Google Scholar 

  37. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 1994; 75: 1086 - 1095.

    Article  PubMed  CAS  Google Scholar 

  38. Altman JD, Kinn J, Duncker DJ, Bache RJ. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc Res 1994; 28: 119 - 124.

    Article  PubMed  CAS  Google Scholar 

  39. Duncker DJ, Bache RJ. Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis. Circ Res 1994; 74: 629 - 640.

    Article  PubMed  CAS  Google Scholar 

  40. Bernstein RD, Ochoa FY, Xu X, Forfia P, Shen W, Thompson CI, Hintze TH. Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circ Res 1996; 79: 840 - 848.

    Article  PubMed  CAS  Google Scholar 

  41. Belloni FL. Local control of coronary blood flow. Cardiovasc Res 1979; 13: 63 - 85.

    Article  PubMed  CAS  Google Scholar 

  42. Feigl EO. Coronary physiology. Phys Rev 1983; 63: 1 - 205.

    CAS  Google Scholar 

  43. Stewart DJ, Münzel T, Bassenge E. Reversal of acetylcholine-induced coronary resistance vessel dilation by hemoglobin. Eur J Pharmacol 1987; 136: 239 - 242.

    Article  PubMed  CAS  Google Scholar 

  44. Amezcua JL, Palmer RMJ, De Souza BM, Moncada S. Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Br J Pharmacol 1989; 97: 1119 - 1124.

    Article  PubMed  CAS  Google Scholar 

  45. Amrani M, O’Shea J, Allen NJ, Harding SE, Jayakumar J, Pepper JR, Moncada S, Yacoub MH. Role of basal release of nitric oxide on coronary flow and mechanical performance of the isolated rat heart. J Physiol (London) 1992; 456: 681 - 687.

    CAS  Google Scholar 

  46. Sadoff JD, Scholz PM, Weiss HR. Endogenous basal nitric oxide production does not control myocardial oxygen consumption or function. Proc Soc Exp Biol Med 1996; 211: 332 - 338.

    PubMed  CAS  Google Scholar 

  47. Kirkeboen KA, Naess PA, Offstad J, Ilebekk A. Effects of regional inhibition of nitric oxide synthesis in intact porcine hearts. Am J Physiol 1994; 266 (Heart Circ Physiol 35): H1516 - H1527.

    PubMed  CAS  Google Scholar 

  48. Sherman AJ, Davis CA III, Klocke FJ, Harris KR, Srinivadan G, Yaacoub AS, et al. Blockade of nitric oxide synthesis reduces myocardial oxygen consumption in vivo. Circulation 1997; 95: 1328 - 1334.

    Article  PubMed  CAS  Google Scholar 

  49. Deussen A, Sonntag M, Flesche CW, Vogel RM. Minimal effects of nitric oxide on spatial blood flow heterogeneity of the dog heart. Pflugers Arch 1997; 433: 727 - 734.

    Article  PubMed  CAS  Google Scholar 

  50. Lefroy DC, Crake T, Uren NG, Davies GJ, Maseri A. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation 1993; 88: 43 - 54.

    Article  PubMed  CAS  Google Scholar 

  51. Kelm M, Schrader J. Nitric oxide release from the isolated guinea pig heart. Eur J Pharmacol 1988; 155: 317 - 321.

    Article  PubMed  CAS  Google Scholar 

  52. Pohl U, Busse R. EDRF increases cyclic GMP in platelets during passage through the coronary vascular bed. Circ Res 1989; 65: 1798 - 1803.

    Article  PubMed  CAS  Google Scholar 

  53. Kelm M, Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res 1990; 66: 1561 - 1575.

    Article  PubMed  CAS  Google Scholar 

  54. Rooke GA, Feigl EO. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 1982; 50: 273 - 286.

    Article  PubMed  CAS  Google Scholar 

  55. Hintze TH, Vatner SF. Reactive dilation of large coronary arteries in conscious dogs. Circ Res 1984; 54: 50 - 57.

    Article  PubMed  CAS  Google Scholar 

  56. Holtz J, Forestermann U, Pohl U, Geisler M, Bassange E. Flow-dependent, endothelium mediated dilation of epicardial coronary artery in conscious dogs: effects of cyclo-oxygenase inhibition. J Cardiovase Pharm 1984; 6: 1161 - 1169.

    CAS  Google Scholar 

  57. Inoue T, Tomoike H, Hasano K, Nakamura M. Endothelium determines flow-dependent dilation of epicardial coronary artery in dogs. J Am Coll Cardiol 1988; 11: 187 - 191.

    Article  PubMed  CAS  Google Scholar 

  58. Wang J, Kaley G, Wolin MS, Hintze TH. Nitro-L-arginine specifically inhibits flow velocity induced dilation of large coronary arteries by the L-arginine pathway in conscious dogs. FASEB J 1991; 5: A660.

    Google Scholar 

  59. Borutaité V, Brown GC. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J 1996; 315: 259 - 299.

    Google Scholar 

  60. Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AVH. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Lett 1994; 345: 50 - 54.

    Article  PubMed  CAS  Google Scholar 

  61. King CE, Melinshyn MJ, Mewburn JD, Curtis SE, Winn ME, Cain SM, Chapler CK. Canine hind-limb blood flow and oxygen uptake after inhibition of EDRF/NO synthesis. J Appl Physiol 1994; 76: 1166 - 1171.

    PubMed  CAS  Google Scholar 

  62. Brown GC. Nitric oxide regulates mitochondrial respiration and cell function by inhibiting cytochrome oxidase. FEBS Lett 1995; 369: 136 - 139.

    Article  PubMed  CAS  Google Scholar 

  63. Okada S, Takehara Y, Yabuki M, Yoshioka T, Yasuda T, Inoue M, Utsumi K. Nitric oxide, a physiological modulator of mitochondrial function. Physiol Chem Phys Med NMR 1996; 28: 69 - 82.

    PubMed  CAS  Google Scholar 

  64. Takehara Y, Nakahara H, Inai Y, Yabuki M, Hamazaki K, Yoshioka T, et al. Oxygen-dependent reversible inhibition of mitochondrial respiration by nitric oxide. Cell Struct Funct 1996; 21: 251 - 258.

    Article  PubMed  CAS  Google Scholar 

  65. Heinemann FW, Balaban RS. Control of mitochondrial respiration in the heart in vivo. Annu Rev Physiol 1990; 52: 523 - 542.

    Article  Google Scholar 

  66. Berne RM, Rubio R. Coronary circulation. In: Handbook of Physiology. The Cardiovascular System. The Heart, American Physiological Society, Bethesda, MD, 1979, pp. 873 - 952.

    Google Scholar 

  67. Bates TE, Loesch A, Burnstock G, Clark JB. Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun 1996; 218: 40 - 44.

    Article  PubMed  CAS  Google Scholar 

  68. Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze TH. Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res 1996; 79: 381 - 387.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang X, Xie YW, Nasjletti A, Xu X, Wolin MS, Hintze TH. ACE inhibitors promote nitric oxide accumulation to modulate myocardial oxygen consumption. Circulation 1997;95:176-182.

    Article  PubMed  Google Scholar 

  70. Palmer G, Horgan DJ, Tisdale H, Singer TP, Beinert H. Studies on the respiratory chain-linked reduced nicotinamide adenine dinueleotide dehydrogenase: XIV Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem 1968; 243: 844 - 847.

    PubMed  CAS  Google Scholar 

  71. Granger DL, Taintor RR, Cook JL, Hibbs JB Jr. Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J Clin Invest 1980; 65: 357 - 370.

    Article  PubMed  CAS  Google Scholar 

  72. Shen W, Hintze TH, Wolin MS. Nitric oxide: an important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 1995; 92: 1086 - 1095.

    Article  Google Scholar 

  73. McConnell PI, Bernstein RD, Recchia FA, Xu X, Vogel T, Curran C, Hintze TH. Chronic inhibition of nitric oxide synthase alters cardiac substrate handling-underestimating changes in metabolism. Circulation 1997; 96: I - 314 (abstract).

    Google Scholar 

  74. Bernstein RD, Forfia PR, Xu X, Ochoa M, Hintze TH. Nitric oxide regulates myocardial oxygen consumption and substrate utilization in the conscious dog. Circulation 1997; 96: I - 381 (abstract).

    Google Scholar 

  75. Randle PJ, England PJ, Denton RM. Control of the tricarboxylic acid cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J 1970; 117: 677 - 695.

    PubMed  CAS  Google Scholar 

  76. Opie LH. Myocardial energy metabolism. Adv Cardiol 1974; 12: 70 - 83.

    PubMed  CAS  Google Scholar 

  77. Winlaw DS, Smythe GA, Keogh AM, Schyvens CG, Spratt PM, Macdonald PS. Increased nitric oxide production in heart failure. Lancet 1994; 344: 373 - 374.

    Article  PubMed  CAS  Google Scholar 

  78. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323: 236 - 241.

    Article  PubMed  CAS  Google Scholar 

  79. Drexler H, Hayoz D, Munzel T, Horing B, Just H, Brunner HR, Zelis R. Endothelial function in chronic congestive heart failure. Am J Cardiol 1992; 69: 1596 - 1601.

    Article  PubMed  CAS  Google Scholar 

  80. Wang J, Seyedi N, Xu X, Wolin MS, Hintze TH. Defective endothelium-mediated control of coronary circulation in conscious dogs after heart failure. Am J Physiol 1994; 266 (Heart Circ Physiol 35): H670 - H680.

    PubMed  CAS  Google Scholar 

  81. Zhao G, Shen W, Xu X, Ochoa M, Bernstein R, Hintze TH. Selective impairment of vagally mediated, nitric oxide-dependent coronary vasodilation in conscious dogs after pacing-induced heart failure. Circulation 1995; 91: 2655 - 2663.

    Article  PubMed  CAS  Google Scholar 

  82. Kaiser L, Spickard RC, Olivier NB. Heart failure depresses endothelium-dependent responses in canine femoral artery. Am J Physiol 1989; 256 (Heart Circ Physiol 25): H962 - H967.

    PubMed  CAS  Google Scholar 

  83. Bernstein RD, Zhang X, Zhao G, Forfia PR, Tuzman J, Ochoa M, Vogel T, Hintze TH. Mechanisms of nitrate accumulation in plasma during pacing induced heart failure in conscious dogs. Nitric Oxide: Biol Chem 1997; 1: 386 - 396.

    Article  CAS  Google Scholar 

  84. Ontkean M, Gay R, Greenberg B. Diminished endothelium-derived relaxing factor activity in an experimental model of chronic heart failure. Circ Res 1991; 69: 1088 - 1096.

    Article  PubMed  CAS  Google Scholar 

  85. Kichuk MR, Seyedi N, Zhang X, Marboe CC, Michler RE, Addonizio LJ, et al. Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation. Circulation 1996; 94: 44 - 51.

    Article  PubMed  CAS  Google Scholar 

  86. Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 1991; 84: 1589 - 1596.

    Article  PubMed  CAS  Google Scholar 

  87. Hirooka Y, Imaizumi T, Harada S, Masaki H, Momohara M, Tagawa T, Takeshita A. Endothelium-dependent forearm vasodilation to acetylcholine but not to substance P is impaired in patients with heart failure. J Cardiovasc Pharm1992;20(Suppl 12 ): S221 - S225.

    Google Scholar 

  88. Smith CJ, Sun D, Hoegler C, Roth BS, Zhang X, Zhao G, et al. Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 1996; 78: 58 - 64.

    Article  PubMed  CAS  Google Scholar 

  89. DeBelder AJ, Radomski MW, Why HJF, Richardson Pi, Bucknall CA, Salas E, Mertin JF, Moncada S. Nitric oxide synthase activities in human myocardium. Lancet 1993; 341: 84 - 85.

    Article  PubMed  Google Scholar 

  90. Ungureanu-Longrois D, Ballingand JL, Kelly RA, Smith TW. Myocardial contractile disfunction in the systemic inflammatory response syndrome: role of a cytokine-inducible nitric oxide synthase in cardiac myocytes. J Mol Cell Cardiol 1995; 27: 155 - 167.

    Article  PubMed  CAS  Google Scholar 

  91. Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 1993; 265: H176 - H182.

    PubMed  CAS  Google Scholar 

  92. Weyrich AS, Ma X-L, Buerke M, Murohara T, Armstead VE, Lefer AM, et al. Physiological concentrations of nitric oxide do not elicit an acute negative inotropic effect in unstimulated cardiac muscle. Circ Res 1994; 75: 692 - 700.

    Article  PubMed  CAS  Google Scholar 

  93. Luss H, Li RK, Shapiro RA, Tzeng E, McGowan FX, Yoneyama T, et al. Dedifferentiated human ventricular cardiac myocytes express inducible nitric oxide synthase mRNA but not protein in response to IL-1, TNF, IFN gamma, and LPS. J Mol Cell Cardiol 1997; 29: 1153 - 1165.

    Article  PubMed  CAS  Google Scholar 

  94. Wang J, Yi G-H, Knecht M, Cai B-L, Poposkis S, Packer M, Burkhoff D. Physical training alters the pathogenesis of pacing-induced heart failure through endothelium mediated mechanisms in awake dogs. Circulation 1997; 96: 2683 - 2692.

    Article  PubMed  CAS  Google Scholar 

  95. Comini L, Bachetti T, Gaia G, Pasini E, Agnoletti L, Pepi P, et al. Aorta and skeletal muscle NO synthase expression in experimental heart failure. J Mol Cell Cardiol 1996; 28: 2241 - 2248.

    Article  PubMed  CAS  Google Scholar 

  96. Kaye DM, Chin-Dusting J, Esler MD, Jennings GL. The failing human heart does not release nitrogen oxides. Life Sci 1998; 62: 883 - 887.

    Article  PubMed  CAS  Google Scholar 

  97. Radomski JL, Palmiri C, Hearn WL. Concentrations of nitrate in normal human urine and the effects of nitrate ingestion. Toxicol Appl Pharmacol 1978; 45: 63 - 68.

    Article  PubMed  CAS  Google Scholar 

  98. Wennmalm A, Benthin G, Edlund A, Jungersten L, Kieler-Jensen N, Lundin S, et al. Metabolism and excretion of nitric oxide in Humans: an experimental and clinical study. Circ Res 1993; 73: 1121 - 1127.

    Article  PubMed  CAS  Google Scholar 

  99. Recchia FA, Bernstein RD, Vogel T, Xu X, Hintze TH. Reduced cardiac NO production during pacing-induced heart failure. J Mol Cell Cardiol 1997; 29: A168 (abstract).

    Google Scholar 

  100. Recchia FA, Bernstein RD, McConnell PI, Xu X, Vogel T, Hintze TH. Relationship between reduced NO production and altered myocardial metabolism during cardiac decompensation in conscious dogs. Circulation 1997; 96: I - 571 (abstract).

    Google Scholar 

  101. Wolff MR, de Tombe PP, Harasawa Y, Burkhoff D, Bier S, Hunter WC, Gerstenblith G, Kass DA. Alterations in left ventricular mechanics, energetics, and contractile reserve in experimental heart failure. Circ Res 1992; 70: 516 - 529.

    Article  PubMed  CAS  Google Scholar 

  102. Hayashi Y, Takeuchi M, Takaoka H, Hata K, MoriYokoyama M. Alteration in energetics in patients with left ventricular dysfunction after myocardial infarction. Circulation 1996; 93: 932 - 939.

    Article  PubMed  CAS  Google Scholar 

  103. Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 1997; 240: 419 - 424.

    Article  PubMed  CAS  Google Scholar 

  104. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, et al. Yama/CPP32 beta a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 1995; 81: 810 - 809.

    Article  Google Scholar 

  105. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med 1996; 183: 1957 - 1964.

    Article  PubMed  CAS  Google Scholar 

  106. Kajstura J, Zhang X, Liu Y, Szoke E, Cheng W, Olivetti G, Hintze TH, Anversa P. Cellular basis of pacing-induced dilated cardiomyopathy: myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation 1995; 92: 2306 - 2317.

    Article  PubMed  CAS  Google Scholar 

  107. Cheng W, Li B, Kajstura J, Li P,Wolin MS, Sonnenblick EH, et al. Stretch-induced programmed myocyte cell death. J Clin Invest 1995; 96: 2247 - 2259.

    Article  PubMed  CAS  Google Scholar 

  108. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335: 1182 - 1189.

    Article  PubMed  CAS  Google Scholar 

  109. Saavedra JE, Billiar TR, Williams DL, Kim YM, Watkins SC, Keefer LK. Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-alphainduced apoptosis and toxicity in the liver. J Med Chem 1997; 40: 1947 - 1954.

    Article  PubMed  CAS  Google Scholar 

  110. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 1993; 90: 347 - 351.

    Article  PubMed  CAS  Google Scholar 

  111. Keaney JF Jr, Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol 1996; 271 (Heart Circ Physiol 40): H2646 - H2652.

    PubMed  CAS  Google Scholar 

  112. Ebihara Y, Karmazyn M. Inhibition of beta-but not alpha 1-mediated adrenergic responses in isolated hearts and cardiomyocytes by nitric oxide and 8-bromo cyclic GMP. Cardiovasc Res 1996; 32: 622 - 629.

    PubMed  CAS  Google Scholar 

  113. Hare JM, Loh E, Creager MA, Colucci WS. Nitric oxide inhibits the positive inotropic response to betaadrenergic stimulation in humans with left ventricular dysfunction. Circulation 1995; 92: 2198 - 2203.

    Article  PubMed  CAS  Google Scholar 

  114. Hare JM, Keaney JF, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest 1995; 95: 360 - 366.

    Article  PubMed  CAS  Google Scholar 

  115. Molinoff PB. Alpha-and beta-adrenergic receptor subtype properties, distribution, and regulation. Drugs 1984; 28: 1 - 15.

    Article  PubMed  CAS  Google Scholar 

  116. Watanabe A, Besch HR. Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium. Circ Res 1975; 37: 309 - 317.

    Article  PubMed  CAS  Google Scholar 

  117. Kelm M, Schafer S, Dahmann R, Dolu B, Perings S, Decking UK, Schrader J, Strauer BE. Nitric oxide induced contractile dysfunction is related to a reduction in myocardial energy generation. Cardiovasc Res 1997; 36: 185 - 194.

    Article  PubMed  CAS  Google Scholar 

  118. Bode-Böger SM, Böger RH, Schröder EP, Frölich JC. Exercise increases systemic nitric oxide production in men. J Cardiovasc Risk 1994; 1: 173 - 178.

    PubMed  Google Scholar 

  119. Gilligan DM, Panza JA, Kilcoyne CM, Waclawiw MA, Casino PR, Quyyumi AA. Contribution of endothelium-derived nitric oxide to exercise induced vasodilation. Circulation 1994; 90: 2853 - 2858.

    Article  PubMed  CAS  Google Scholar 

  120. Ishibashi Y, Duncker DJ, Bache RJ. Endogenous nitric oxide masks alpha 2-adrenergic coronary vasoconstriction during exercise in the ischemic heart. Circ Res 1997; 80: 196 - 207.

    Article  PubMed  CAS  Google Scholar 

  121. Cocks TM, Angus JA. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 1983; 1305: 627 - 630.

    Article  Google Scholar 

  122. Vanhoutte PM, Miller VM. Alpha2-adrenoceptors and endothelium-derived relaxing factor. Am J Med 1989; 87 (Suppl 3C): 1S - 5S.

    Article  PubMed  CAS  Google Scholar 

  123. Delp MD, McAllister RM, Laughlin MH. Exercise training alters endothelium dependent vasoreactivity of rat abdominal aorta. J Appl Physiol 1993; 75: 1354 - 1363.

    PubMed  CAS  Google Scholar 

  124. Muller JM, Myers PR, Laughlin MH. Vasodilator responses of coronary resistance arteries of exercise-trained pigs. Circulation 1994; 89: 2308 - 2314.

    Article  PubMed  CAS  Google Scholar 

  125. Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 1993; 73: 829 - 838.

    Article  PubMed  CAS  Google Scholar 

  126. Zhao G, Zhang X, Xu X, Ochoa M, Hintze TH. Short-term exercise training enhances reflex cholinergic nitric oxide-dependent coronary vasodilation in conscious dogs. Circ Res 1997; 80: 868 - 867.

    Article  PubMed  CAS  Google Scholar 

  127. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial nitric oxide synthase gene expression. Circ Res 1994; 74: 349 - 353.

    Article  PubMed  CAS  Google Scholar 

  128. Horing B, Maier V, Drexler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation 1996; 93: 210 - 214.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bernstein, R.D., Recchia, F.A., Kaley, G., Hintze, T.H. (1999). Nitric Oxide and the Heart. In: Share, L. (eds) Hormones and the Heart in Health and Disease. Contemporary Endocrinology, vol 21. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-708-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-708-6_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5420-9

  • Online ISBN: 978-1-59259-708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics