Skip to main content

Embryonal Carcinoma Cells

The Malignant Counterparts of ES and EG Cells

  • Chapter
Human Embryonic Stem Cells

Abstract

Teratomas are histologically complex tumors containing a wide variety of distinct tissues, often in disorganized patterns, but sometimes with more or less recognizable tissue architecture and, occasionally, with recognizable organs. Teeth and hair are especially well known in dermoid cysts, the benign teratomas of the ovary. These tumors have excited interest and imagination throughout history, with their occasional obvious resemblance to abnormal embryos—hence the name, teratoma, from the Greek term for “monster.” In earlier times, different societies took them as mystical signs, sometimes as bad omens, sometimes to predict good fortune (e.g., see ref. 1). However, by the late 19th and early 20th centuries, pathologists began to develop more rational concepts of the causes and origins of teratomas, better rooted in the developing understanding of embryogenesis. Fascinating accounts of the natural history of these tumors and the development of ideas about their origins are provided by Damjanov and Solter (2) and Wheeler (3). The study of teratomas in the laboratory mouse and the identification of embryonal carcinoma (EC) cells as the pluripotent stem cells of teratocarcinomas provided a starting point that eventually led to the development of embryonic stem (ES) cell lines as tools for developmental biology and the recognition of their potential use in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballantyne, J. W. (1894) The teratological records of Chalden, Teratologia 1, 127–142.

    Google Scholar 

  2. Damjanov, I. and Solter, D. (1974) Experimental teratoma, Curr. Topics Pathol. 59, 69–130.

    Article  CAS  Google Scholar 

  3. Wheeler, J. E. (1983) History of teratomas, in The Human Teratomas: Experimental and Clinical Biology ( Damjanov, I., Knowles, B. B., and Solter, D., eds.), Humana, Clifton, NJ, pp. 1–22.

    Chapter  Google Scholar 

  4. Dixon, F. S. and Moore, R. A. (1952) Tumors of the male sex organs, Atlas of Tumor Pathology, vol. 8, Armed Forces Institute of Pathology, Washington, DC, Fascicles 31b and 32.

    Google Scholar 

  5. Mostofi, F. K. and Price, E. B. (1973) Tumours of the male genital system, in Atlas of Tumor Pathology, Second Series, Armed Forces Institute of Pathology, Washington, DC, Fascicle 8.

    Google Scholar 

  6. Einhorn, L. H. (1987) Treatment strategies of testicular cancer in the United States, Int. J. Androl. 10, 399–405.

    Article  PubMed  CAS  Google Scholar 

  7. Stoter, G. (1987) Treatment strategies of testicular cancer in Europe, Int. J. Androl. 10, 407–415.

    Article  PubMed  CAS  Google Scholar 

  8. Oosterhuis, J. W., Castedo, S. M., and de Jong, B. (1990) Cytogenetics, ploidy and differentiation of human testicular, ovarian and extragonadal germ cell tumours, Cancer Surv. 9, 320–332.

    PubMed  CAS  Google Scholar 

  9. Geurts van Kessel, A., Suijkerbuijk, R. F., Sinke, R. J., et al. (1993) Molecular cytogenetics of human germ cell tumours: i(12p) and related chromosomal anomalies, Eur Urol. 23, 23–28.

    Google Scholar 

  10. Damjanov, I. (1990) Teratocarcinoma stem cells, Cancer Surv. 9, 303–319.

    Google Scholar 

  11. Damjanov, I. (1993) Pathogenesis of testicular germ cell tumors, Eur. Urol. 23, 2–7.

    PubMed  CAS  Google Scholar 

  12. Martineau, M. (1969) Chromosomes in human testicular tumors, J. Pathol. 99, 271–281.

    Article  PubMed  CAS  Google Scholar 

  13. Linder, D. (1969) Gene loss in human teratomas, Proc. Natl. Acad. Sci. USA 63, 699–704.

    Article  PubMed  CAS  Google Scholar 

  14. Linder, D. (1983) The origin of teratomas, in The Human Teratomas: Experimental and Clinical Biology (Damjanov, I., Knowles, B. B., and Solter, D., eds.), Humana, Clifton, NJ, pp. 67–80.

    Chapter  Google Scholar 

  15. Carritt, B., Parrington, J. M., Welch, H. M., et al. (1982) Diverse origins of multiple ovarian teratomas in a single individual, Proc. Natl. Acad. Sci. USA 79, 7400–7404.

    Article  PubMed  CAS  Google Scholar 

  16. Atkin, N. B. (1973) Y bodies and similar fluorescent chromocentres in human tumors including teratomata, Br. J. Cancer 27, 183–189.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, N., Perkins, K. L., Bronson, D. L., and Fraley, E. E. (1981) Cytogenetic evidence for premeiotic transformation of human testicular cancers, Cancer Res. 41, 2135–2140.

    PubMed  CAS  Google Scholar 

  18. Atkin, N. B. and Baker, M. C. (1982) Specific chromosome change i(12p) in testicular tumors, Lancet ii, 1349.

    Google Scholar 

  19. Atkin, N. B. and Baker, M. C. (1983) I(12p): specific chromosomal marker in seminoma and malignant teratoma of the testis?, Cancer Genet. Cytogenet. 10, 199–204.

    Article  PubMed  CAS  Google Scholar 

  20. Suijkerbuijk, R. F., Sinke, R. J., Meloni, A. M., et al. (1993) Overrepresentation of chromosome 12p sequences and karyotypic evolution in i(12p)negative testicular germ-cell tumors revealed by fluorescence in situ hybridization, Cancer Genet. Cytogenet. 70, 85–93.

    Article  PubMed  CAS  Google Scholar 

  21. Murty, V. V., Houldsworth, J., Baldwin, S., et al. (1992) Allelic deletions in the long arm of chromosome 12 identify sites of candidate tumor suppressor genes in male germ cell tumors, Proc. Natl. Acad. Sci. USA 89, 11,006–11,010.

    Google Scholar 

  22. Murty, V. V., Renault, B., Falk, C. T., et al. (1996) Physical mapping of a commonly deleted region, the site of a candidate tumor suppressor gene, at 12q22 in human male germ cell tumors, Genomics 35, 562–570.

    Google Scholar 

  23. Rapley, E. A., Crockford, G. P., Teare, D., et al. (2000) Localization to X827 of a susceptibility gene for testicular germ-cell tumours, Nature Genet. 24, 197–200.

    Article  PubMed  CAS  Google Scholar 

  24. Stevens, L. C. and Little, C. C. (1954) Spontaneous testicular teratomas in an inbred strain of mice, Proc. Natl. Acad. Sci. USA 40, 1080–1087.

    Article  PubMed  CAS  Google Scholar 

  25. Stevens, L. C. and Hummel, K. P. (1957) A description of spontaneous congenital testicular teratomas in strain 129 mice, J. Natl. Cancer. Inst. 18, 719–747.

    PubMed  CAS  Google Scholar 

  26. Stevens, L. C. (1967) The biology of teratomas, Adv. Morphol. 6, 1–31.

    CAS  Google Scholar 

  27. Stevens, L. C. (1970) Experimental production of testicular teratomas in mice of strains 129, A/He and their F1 hybrids, J. Natl. Cancer Inst. 44, 929–932.

    Google Scholar 

  28. Stevens, L. C. (1970) The development of transplantable teratocarcinomas from intratesticular grafts of pre and post implantation mouse embryos, Dev. Biol. 21, 364–382.

    Article  PubMed  CAS  Google Scholar 

  29. Solter, D., Skreb, N., and Damjanov, I. (1970) Extrauterine growth of mouse egg-cylinders results in malignant teratoma, Nature 227, 503–504.

    Article  PubMed  CAS  Google Scholar 

  30. Solter, D., Dominis, M., and Damjanov, I. (1979) Embryo-derived teratocarcinomas: I. The role of strain and gender in the control of teratocarcinogenesis, Int. J. Cancer 24, 770–772.

    Article  PubMed  CAS  Google Scholar 

  31. Solter, D., Dominis, M., and Damjanov, I. (1981) Embryo-derived teratocarcinoma. III Development of tumors from teratocarcinoma-permissive and non-permissive strain embryos transplanted to F1, hybrids, Int. J. Cancer 28, 479–483.

    Google Scholar 

  32. Solter, D. and Damjanov, I. (1979). Teratocarcinomas rarely develop from embryos transplanted into athymic mice, Nature 278, 554–555.

    Article  PubMed  CAS  Google Scholar 

  33. Stevens, L. C. (1964) Experimental production of testicular teratomas in mice, Proc. Natl. Acad. Sci. USA 52, 654–661.

    Article  PubMed  CAS  Google Scholar 

  34. Bendel-Stenzel, M., Anderson, R., Heasman, J., and Wylie, C. (1998) The origin and migration of primordial germ cells in the mouse, Semin. Cell Dev. Biol. 9, 393–400.

    Google Scholar 

  35. Stevens, L. C. (1967) Origin of testicular teratomas from primordial germ cells in mice, J. Natl. Cancer Inst. 38, 549–552.

    PubMed  CAS  Google Scholar 

  36. McLaren, A. and Southee, D. (1997) Entry of mouse embryonic germ cells into meiosis, Dev. Biol. 187, 107–113.

    Article  PubMed  CAS  Google Scholar 

  37. Crittenden, S. L., Troemel, E. R., Evans, T. C., and Kimble, J. (1994) GLP-1 is localized to the mitotic region of the C. elegans germ line, Development 120, 2901–2911.

    PubMed  CAS  Google Scholar 

  38. Berry, L. W., Westlund, B., and Schedi, T. (1997) Germ-line tumor formation caused by activation of gip-1, a Caenorhabditis elegans member of the Notch family of receptors, Development 124, 925–936.

    PubMed  CAS  Google Scholar 

  39. Ellisen, L. W., Bird, J., West, D. C., et al. (1991) Tan-1, the human homologue of the Drosophila Notch gene is broken by chromosomal translocation in T-lymphoblastic neoplasms, Cell 66, 649–661.

    CAS  Google Scholar 

  40. Gokhale, P. J., Eastwood, D., Walsh, J., and Andrews, P. W. (1998) The possible role of Notch gene expression in germ cell tumour development and progression, in Germ Cell Tumours IV (Jones, W. G., Appleyard, I., Harnden, P., et al., eds.), John Libbey, London, pp. 69–71.

    Google Scholar 

  41. Finch, B. W. and Ephrussi, B. (1967) Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinomas during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines, Proc. Natl. Acad. Sci. USA 57, 615–621.

    Article  PubMed  CAS  Google Scholar 

  42. Kahn, B. W. and Ephrussi, B. (1970) Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma, J. Natl. Cancer Inst. 44, 10151029.

    Google Scholar 

  43. Bernstine, E. G., Hooper, M. L., Grandchamp, S., and Ephrussi, B. (1973) Alkaline phosphatase activity in mouse teratoma, Proc. Natl. Acad. Sci. USA 70, 3899–3903.

    Article  CAS  Google Scholar 

  44. Evans, M. J. (1972) The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells, J. Embryol. Exp. Morphol. 28, 163–176.

    Google Scholar 

  45. Jakob, H., Boon, T., Gaillard, J., Nicolas, J.-F., and Jacob, F. (1973) Tératocarcinoma de la souris: isolement, culture, et proprieties de cellules à potentialities multiples, Ann. Microbiol. Inst. Pasteur 124B, 269–282.

    CAS  Google Scholar 

  46. Martin, G. R. and Evans, M. J. (1974) The morphology and growth of a pluripotent teratocarcinomas cell line and its derivatives in tissue culture, Cell 2, 163–172.

    Article  PubMed  CAS  Google Scholar 

  47. Martin, G. R. and Evans, M. J. (1975) Differentiation of clonal lines of teratocarcinomas cells: formation of embryoid bodies in vitro, Proc. Natl. Acad. Sci. USA 72, 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  48. Nicolas, J-F., Dubois, P., Jakob, H., Gaillard, J., and Jacob, F. (1975) Tératocarcinome de la souris: différenciation en culture d’une lignée de cellules primitives à potentialities multiples, Ann. Microbiol. Inst. Pasteur 126A, 3–22.

    CAS  Google Scholar 

  49. Strickland, S. and Mandavi, V. (1978) The induction of differentiation in teratocarcinomas stem cells by retinoic acid, Cell 15, 393–403.

    Article  PubMed  CAS  Google Scholar 

  50. Strickland, S., Smith, K. K., and Marotti, K. R (1980) Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP, Cell 21, 347–355.

    Article  PubMed  CAS  Google Scholar 

  51. Hogan, B. L. M., Barlow, D. P., and Tilly, R. (1983) F9 teratocarcinoma cells as a model for the differentiation of parietal and visceral endoderm in the mouse embryo, Cancer Surv. 2, 115–140.

    Google Scholar 

  52. Jakob, H., Dubois, P., Eisen, H., and Jacob, F. (1978) Effets de l’hexaméthylènebisacétamide sur la différenciation de cellules de carcinome embryonnaire, C. R. Acad. Sci. (Paris) 286, 109–111.

    CAS  Google Scholar 

  53. McBurney, M. W., Jones-Villeneuve, E. M., Edwards, M. K., and Anderson, P. J. (1982) Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line, Nature 299, 165–167.

    Article  PubMed  CAS  Google Scholar 

  54. Jones-Villeneuve, E. M., McBurney, M. W., Rogers, K. A., and Kalnins, V. I. (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells, J. Cell Biol. 94, 253–262.

    Article  PubMed  CAS  Google Scholar 

  55. Kleinsmith, L. J. and Pierce, G. B. (1964) Multipotentiality of single embryonal carcinoma cells, Cancer Res. 24, 1544–1552.

    PubMed  CAS  Google Scholar 

  56. Artzt, K., Dubois, P., Bennett, D., Condamine, H., Babinet, C., and Jacob, F. (1973) Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture, Proc. Natl. Acad. Sci. USA 70, 2988–2992.

    Article  PubMed  CAS  Google Scholar 

  57. Jacob, F. (1978) Mouse teratocarcinoma and mouse embryo, Proc. Ry. Soc. Lond. B 201, 249–270.

    Article  CAS  Google Scholar 

  58. Brinster, R. L. (1 974) The effect of cells transferred into the mouse blastocyst on subsequent development, J. Exp. Med. 140, 1049–1056.

    Google Scholar 

  59. Papaioannou, V. E., McBurney, M. W., Gardner, R. L., and Evans, M. J. (1975) Fate of teratocarcinoma cells injected into early mouse embryos, Nature 258, 70–73.

    Article  PubMed  CAS  Google Scholar 

  60. Mintz, B. and Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells, Proc. Natl. Acad. Sci. USA 72, 3585–3589.

    Article  PubMed  CAS  Google Scholar 

  61. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos, Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  62. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc. Natl. Acad. Sci. USA 78, 7634–7636.

    Google Scholar 

  63. Niwa, H., Miyazaki, J., and Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells, Nature Genet. 24, 372–376.

    Google Scholar 

  64. Niwa, H., Burdon, T., Chambers, I., and Smith, A. G. (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3, Genes Dev. 12, 2048–2060.

    Article  PubMed  CAS  Google Scholar 

  65. Burdon, T., Stracey, C., Chambers, I., Nichols, J., and Smith, A. (1999) Suppression of SHP-2 and ERK signaling promotes self-renewal of mouse embryonic stem cells, Dev. Biol. 210, 30–43.

    Google Scholar 

  66. Boeuf, H., Hauss, C., De Graeve, F., Baran, N., and Kedinger, C. (1997) Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells, J. Cell Biol. 138, 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  67. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts, Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  68. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro, Nature Biotechnol. 18, 399–404.

    Article  CAS  Google Scholar 

  69. Pierce, G. B., Verney, E. L., and Dixon, F. J. (1957) The biology of testicular cancer I. Behavior after transplantation, Cancer Res. 17, 134–138.

    PubMed  CAS  Google Scholar 

  70. Fogh, J. and Trempe, G. (1975) New human tumor cell lines, in Human Tumor Cells In Vitro ( Fogh, J., ed.), Plenum, New York, pp. 115–159.

    Chapter  Google Scholar 

  71. Hogan, B., Fellous, M., Avner, P., and Jacob, F. (1977) Isolation of a human teratoma cell line which expresses F9 antigen, Nature 270, 515–518.

    Article  PubMed  CAS  Google Scholar 

  72. Cotte, C. A., Easty, G. C., and Neville, A. M. (1981). Establishment and properties of human germ cell tumors in tissue culture, Cancer Res. 41, 1422–1427.

    PubMed  CAS  Google Scholar 

  73. Wang, N., Trend, B., Bronson, D. L., and Fraley, E. E. (1980) Nonrandom abnormalities in chromosome 1 in human testicular cancers, Cancer Res. 40, 796–802.

    Google Scholar 

  74. Andrews, P. W., Bronson, D. L., Benham, F., Strickland, S., and Knowles, B. B. (1980). A comparative study of eight cell lines derived from human testicular teratocarcinoma, Int. J. Cancer 26, 269–280.

    Article  PubMed  CAS  Google Scholar 

  75. Andrews, P. W., Goodfellow, P. N., Shevinsky, L., Bronson, D. L., and Knowles, B. B. (1982) Cell surface antigens of a clonal human embryonal carcinoma cell line: morphological and antigenic differentiation in culture, Int. J. Cancer 29, 523–531.

    Google Scholar 

  76. Benham, F. J., Andrews, P. W., Bronson, D. L., Knowles, B. B., and Harris, H. (1981) Alkaline phosphatase isozymes as possible markers of differentiation in human teratocarcinoma cell. lines, Dev. Biol. 88, 279–287.

    Article  PubMed  CAS  Google Scholar 

  77. Damjanov, I. and Andrews, P. W. (1983) Ultrastructural differentiation of a clonal human embryonal carcinoma cell line in vitro, Cancer Res. 43, 2190 2198.

    Google Scholar 

  78. Bronson, D. L., Andrews, P. W., Solter, D., Cervenka, J., Lange, P. H., and Fraley, E. E. (1980) A cell line derived from a metastasis of a human testicular germ-cell tumor, Cancer Res. 40, 2500–2506.

    PubMed  CAS  Google Scholar 

  79. Andrews, P. W., Bronson, D. L., Wiles, M. V., and Goodfellow, P. N. (1981) The expression of major histocompatibility antigens by human teratocarcinoma derived cells lines, Tissue Antigens 17, 493–500.

    Article  PubMed  CAS  Google Scholar 

  80. Andrews, P. W., Damjanov, I., Simon, D., et al. (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2: differentiation in vivo and in vitro, Lab. Invest. 50, 147–162.

    PubMed  CAS  Google Scholar 

  81. Chen, C., Fenderson, B. A., Andrews, P. W., and Hakomori, S.-I. (1989) Glycolipid-glycosyltransferases in human embryonal carcinoma cells during retinoic acid-induced differentiation, Biochemistry 28, 2229–2238.

    Article  PubMed  CAS  Google Scholar 

  82. Solter, D. and Knowles, B. B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc. Natl. Acad. Sci. USA 75, 5565–5569.

    Article  PubMed  CAS  Google Scholar 

  83. Gooi, H. C., Feizi, T., Kapadia, A., Knowles, B. B., Solter, D., and Evans, M. J. (1981) Stage specific embryonic antigen involves a1→3 fucosylated type 2 blood group chains, Nature 292, 156–158.

    Article  PubMed  CAS  Google Scholar 

  84. Kannagi, R., Nudelman, E., Levery, S. B., and Hakomori, S. (1982) A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1, J. Biol. Chem. 257, 14,865–14, 874.

    Google Scholar 

  85. Andrews, P. W., Casper, J., Damjanov, I., et al. (1996) Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumors, Int. J. Cancer 66, 806–816.

    Article  PubMed  CAS  Google Scholar 

  86. Shevinsky, L., Knowles, B. B., Damjanov, I., and Solter, D. (1982) Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells, Cell 30, 697–705.

    Article  PubMed  CAS  Google Scholar 

  87. Kannagi, R., Cochran, N. A., Ishigami, F., et al. (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglio-side isolated from human teratocarcinoma cells, EMBO J. 2, 2355–2361.

    PubMed  CAS  Google Scholar 

  88. Damjanov, I., Fox, N., Knowles, B. B., Solter, D., Lange, P. H., and Fraley, E. E. (1982) Immunohistochemical localization of murine stage-specific embryonic antigens in human testicular germ cell tumors, Am. J. Pathol. 108, 225–230.

    PubMed  CAS  Google Scholar 

  89. Draper, J. S., Pigott, C., Thomson, J. A., and Andrews, P. W. (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture, J. Anat. 200, 249–258

    Article  PubMed  CAS  Google Scholar 

  90. Henderson, J. K., Draper, J. S., Baillie, H. S., et al. (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens, Stem Cells 20, 329–337.

    Article  PubMed  CAS  Google Scholar 

  91. Bird, J. M. and Kimber, S. J. (1984) Oligosaccharides containing fucose linked a(l→3) and a(1→4) to N-acetylglucosamine cause decompaction of mouse morale, Dev. Biol. 104, 449–460.

    Article  PubMed  CAS  Google Scholar 

  92. Fenderson, B. A., Zehavi, U., AND Hakomori, S. (1984) A multivalent lacton-fucopentaose III—lysylysine conjugate decompacts pre-implantation-stage mouse embryos, while the free-oligosaccharide is ineffective, J. Exp. Med. 160, 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  93. Fenderson, B. A., Ostrander, G., Hausken, Z., Radin, N. S., and Hakomori, S. (1992) A ceramide analogue (PDMP) inhibits glycolipids synthesis in fish embryos, Exp. Cell Res. 198, 362–366.

    Article  PubMed  CAS  Google Scholar 

  94. Tippett, P., Andrews, P. W., Knowles, B. B.,Solter, D., and Goodfellow, P. N. (1986) Red cell antigens P (globoside) and Luke: identification by monoclonal antibodies defining the murine stage-specific embryonic antigens -3 and -4 (SSEA-3 and -4), Vox Sang. 51, 53–56.

    Google Scholar 

  95. Race, R. R. and Sanger, R. (1975) Blood Groups in Man, 6th ed., Blackwell Scientific, Oxford, pp. 169–171.

    Google Scholar 

  96. Andrews, P. W., Banting, G. S., Damjanov, I., Arnaud, D., and Avner, P. (1984) Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells, Hybridoma 3, 347–361.

    Article  PubMed  CAS  Google Scholar 

  97. Badcock, G., Pigott, C., Goepel, J., and Andrews P. W. (1999) The human embryonal carcinoma marker antigen TRA-1–60 is a sialylated keratan sulphate proteoglycan, Cancer Res. 59, 4715–4719.

    Google Scholar 

  98. Pera, M. F., Blasco-Lafita, M. J., Cooper, S., Mason, M., Mills, J., and Monaghan, P. (1988) Analysis of cell-differentiation lineage in human teratomas using new monoclonal antibodies to cytostructural antigens of embryonal carcinoma cells, Differentiation 39, 139–149.

    Google Scholar 

  99. Rettig, W. J., Cordon-Cardo, C., Ng, J. S., Oettgen, H. F., Old, L. J., and Lloyd, K. O. (1985) High-molecular-weight glycoproteins of human teratocarcinoma defined by monoclonal antibodies to carbohydrate determinants, Cancer Res. 45, 815–821.

    Google Scholar 

  100. Marrink, J., Andrews, P. W., van Brummen, P. J., et al. (1991) TRA-1–60: a new serum marker in patients with germ cell tumors, Int. J. Cancer 49, 368–372.

    Article  PubMed  CAS  Google Scholar 

  101. Gels, M. E., Marrink J, Visser, P., et al. (1997) Importance of a new tumor marker TRA-1–60 in the follow-up of patients with clinical state I nonseminomatous testicular germ cell tumors, Ann. Surg. Oncol. 4, 321–327.

    Article  PubMed  CAS  Google Scholar 

  102. Andrews, P. W. and Goodfellow, P. N. (1980) Antigen expression by somatic cell hybrids of a murine embryonal carcinoma cell with thymocytes and L cells, Somat. Cell Genet. 6, 271–284.

    Article  PubMed  CAS  Google Scholar 

  103. Duran, C., Talley, P. J., Walsh, J., Pigott, C., Morton, I., and Andrews, P. W. (2001) Hybrids of pluripotent and nullipotent human embryonal carcinoma cells: partial retention of a pluripotent phenotype, Int. J. Cancer 93, 324–332.

    Google Scholar 

  104. Pera, M. F., Cooper, S., Mills, J., and Parrington, J. M. (1989) Isolation and characterization of a multipotent clone of human embryonal carcinoma cells, Differentiation 42, 10–23.

    Google Scholar 

  105. Roach, S., Cooper, S., Bennett, W., and Pera, M. F (1993) Cultured cell lines from human teratomas: windows into tumor growth and differentiation and early human development, Eur. Urol. 23, 82–88.

    PubMed  CAS  Google Scholar 

  106. Roach, S., Schmid, W., and Pera, M. F. (1994) Hepatocytic transcription factor expression in human; embryonal carcinoma and yolk sac carcinoma cell lines: expression of HNF-3alpha in models of early endodermal cell differentiation, Exp. Cell Res. 215, 189–198.

    Article  PubMed  CAS  Google Scholar 

  107. Pera, M. F. and Herzfeld, D. (1998) Differentiation of human pluripotent teratocarcinomas stem cells induced by bone morphogenetic protein-2, Reprod. Fertil. Dev. 10, 551–555.

    Article  PubMed  CAS  Google Scholar 

  108. Teshima, S., Shimosato, Y., Hirohashi, S., et al. (1988) Four new human germ cell tumor cell lines, Lab. Invest. 59, 328–336.

    PubMed  CAS  Google Scholar 

  109. Damjanov, I., Horvat, B., and Gibas, Z. (1993) Retinoic acid-induced differentiation of the developmentally pluripotent human germ cell tumor-derived cell line, NCCIT, Lab. Invest. 68, 202–232.

    Google Scholar 

  110. Hata, J., Fujita, H., Ikeda, E., Matsubayashi, Y., Kokai, Y., and Fujimoto, J. (1989) Differentiation of human germ cell tumor cells, Hum. Cell 2, 382–387.

    Google Scholar 

  111. Umezawa, A., Maruyama, T., Inazawa, J., Imai, S., Takano, T., and Hata, J. (1996) Induction of mcl1/EAT, Bc1–2 related gene, by retinoic acid or heat shock in the human embryonal carcinoma cells, NCR-G3, Cell Struct. Funct. 21, 143–150.

    Article  PubMed  CAS  Google Scholar 

  112. Andrews, P. W. (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro, Dev. Biol. 103, 285–293.

    Article  PubMed  CAS  Google Scholar 

  113. Matthaei, K., Andrews, P. W., and Bronson, D. L. (1983) Retinoic acid fails to induce differentiation in human teratocarcinoma cell lines that express high levels of cellular receptor protein, Exp. Cell Res. 143, 471–474.

    Article  PubMed  CAS  Google Scholar 

  114. Fenderson, B. A., Andrews, P. W., Nudelman, E., Clausen, H., and Hakomori, S.-I. (1987) Glycolipid core structure switching from globo-to lacto-and ganglio-series during retinoic acid-induced differentiation of TERA-2derived human embryonal carcinoma cells, Dev. Biol. 122, 21–34.

    Google Scholar 

  115. Lee, V. M.-Y. and Andrews, P. W. (1986) Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins, J. Neurosci. 6, 514–521.

    PubMed  CAS  Google Scholar 

  116. Pleasure, S. J., Page, C., and Lee, V. M.-Y. (1992) Pure, post-mitotic, polarized human neurons derived from Ntera2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons, J Neurosci. 12, 1802–1815.

    PubMed  CAS  Google Scholar 

  117. Pleasure, S. J. and Lee, V. M. Y. (1993) NTERA-2 cells a human cell line which displays characteristics expected of a human committed neuronal progenitor cell, J. Neurosci. Res. 35, 585–602.

    Article  PubMed  CAS  Google Scholar 

  118. Rendt, J., Erulkar, S., and Andrews, P. W. (1989) Presumptive neurons derived by differentiation of a human embryonal carcinoma cell line exhibit tetrodotoxin-sensitive sodium currents and the capacity for regenerative responses, Exp. Cell Res. 180, 580–584.

    Article  PubMed  CAS  Google Scholar 

  119. Squires, P. E., Wakeman, J. A., Chapman, H., et al. (1996) Regulation of intracellular Ca2+ in response to muscarinic and glutamate receptor antagonists during the differentiation of NTERA2 human embryonal carcinoma cells into neurons, Eur. J. Neurosci. 8, 783–793.

    Article  PubMed  CAS  Google Scholar 

  120. Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V. M., and Sanberg, P. R. (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats, Exp. Neurol. 149, 310–321.

    Article  PubMed  CAS  Google Scholar 

  121. Hurlebert, M. S., Gianani, R. I., Hutt, C., Freed, C. R., and Kaddis, F. G. (1999) Neural transplantation of hNT neurons for Huntington’s disease, Cell Transplant. 8, 143–151.

    Google Scholar 

  122. Kleppner, S. R., Robinson, K. A., Trojanowski, J. Q., and Lee, V. M. (1995) Transplanted human neurons derived from a teratocarcinoma cell line (NTERA2) mature, integrate and survive for over 1 year in the nude mouse brain, J. Comp. Neurol. 357, 618–632.

    Article  PubMed  CAS  Google Scholar 

  123. Philips, M. F., Muir, J. K., Saatman, K. E., et al. (1999) Survival and integration of transplanted postmitotic human neurons following experimental brain injury in immunocompetent rats, J. Neurosurg. 90, 116–124.

    Google Scholar 

  124. Kondziolka, D., Wechsler, L., Goldstein, S., et al. (2000) Transplantation of cultured human neuronal cells for patients with stroke, Neurology 55, 565–569.

    Article  PubMed  CAS  Google Scholar 

  125. Gönczöl, E., Andrews, P. W., and Plotkin, S. A. (1984) Cytomegalovirus replicates in differentiated but not undifferentiated human embryonal carcinoma cells, Science 224, 159–161.

    Article  PubMed  Google Scholar 

  126. Hirka, G., Prakesh, K., Kawashima, H., Plotkin, S. A., Andrews, P. W., and Gönczöl, E. (1991) Differentiation of human embryonal carcinoma cells induces human immunodeficiency virus permissiveness which is stimulated by human cytomegalovirus coinfection, J. Virol. 65, 2732–2735.

    Google Scholar 

  127. LaFemina, R. and Hayward, G. S. (1986) Constitutive and retinoic acid-inducible expression of cytomegalovirus immediate-early genes in human teratocarcinoma cells, J. Virol. 58, 434–440.

    PubMed  CAS  Google Scholar 

  128. Nelson, J. A., Reynolds-Kohler, C., and Smith, B. A. (1987) Negative and positive regulation by a short segment in the 5’-flanking region of the human cytomegalovirus major immediate-early gene, Mol. Cell. Biol. 7, 4125–4129.

    PubMed  CAS  Google Scholar 

  129. Simeone, A., Acampora, D., Arcioni, L., Andrews, P. W., Boncinelli, E., and Mavilio, F. (1990) Sequential activation of human HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells, Nature 346, 763–766.

    Article  PubMed  CAS  Google Scholar 

  130. Bottero, L., Simeone, A., Arcioni, L., et al. (1991) Differential activation of homeobox genes by retinoic acid in human embryonal carcinoma cells, in Recent Results in Cancer Research, Vol 123, Pathobiology of Human Germ Cell Neoplasia ( Oosterhuis, J. W., Walt, H., and Damjanov, I., eds.), Springer-Verlag, Berlin, pp. 133–143.

    Chapter  Google Scholar 

  131. Wakeman, J. A., Walsh, J., and Andrews, P. W. (1998) Human Wnt-13 is developmentally regulated during the differentiation of NTERA-2 pluripotent human embryonal carcinoma cells, Oncogene 17, 179–186.

    Google Scholar 

  132. Lako, M., Lindsay, S., Lincoln, J., Cairns, P. M., Armstrong, L., and Hole, N. (2001) Characterisation of Wnt gene expression during the differentiation of murine embryonic stem cells in vitro: role of Wnt3 in enhancing haematopoietic differentiation, Mech. Dev. 103, 49–59.

    Article  PubMed  CAS  Google Scholar 

  133. Smolich, B. D. and Papkoff, J. (1994) Regulated expression of Wnt family members during neuroectodermal differentiation of P19 embryonal carci-

    Google Scholar 

  134. noma cells: overexpression of Wnt-1 perturbs normal differentiation-specific properties, Dev. Biol. 166, 300–310.

    Google Scholar 

  135. Walsh, J. and Andrews, P. W. (2002) Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cells, Acta Pathol. Micrbiol. Immunol. Scand. 111, 663–677.

    Google Scholar 

  136. Przyborski, S. A., Morton, I. E., Wood, A., and Andrews, P. W. (2000) Developmental regulation of neurogenesis in the pluripotent human embryonal carcinoma cell line NTERA-2, Eur. J. Neurosci. 12, 3521–3528.

    Article  PubMed  CAS  Google Scholar 

  137. Andrews, P. W., Nudelman, E., Hakomori, S.-I., and Fenderson, B. A. (1990) Different patterns of glycolipid antigens are expressed following differentiation of TERA-2 human embryonal carcinoma cells induced by retinoic acid, hexamethylene bisacetamide (HMBA) or bromodeoxyuridine (BUdR), Differentiation 43, 131–138.

    Article  PubMed  CAS  Google Scholar 

  138. Andrews, P. W., Damjanov, I., Berends, J., et al. (1994) Inhibition of proliferation and induction of differentiation of pluripotent human embryonal carcinoma cells by osteogenic protein-1 (or bone morphogenetic protein-7), Lab. Invest. 71, 243–251.

    PubMed  CAS  Google Scholar 

  139. Gokhale, P. J., Giesberts, A. N., and Andrews, P. W. (2000) Brachyury is expressed by human teratocarcinoma cells in the absence of mesodermal differentiation, Cell Growth Differ. 11, 157–162.

    PubMed  CAS  Google Scholar 

  140. Donovan, P. J., Stott, D., Cairns, L. A., Heasman, J., and Wylie, C. C. (1986) Migratory and postmigratory mouse primordial germ cells behave differently in culture, Cell 44, 831–838.

    Article  PubMed  CAS  Google Scholar 

  141. Dolci, S., Williams, D. E., Ernst, M. K., et al. (1991) Requirement for mast cell growth factor for primordial germ cell survival in culture, Nature 352, 809–811.

    Article  PubMed  CAS  Google Scholar 

  142. Matsui, Y., Zsebo, K., and Hogan, B. L. M. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture, Cell 70, 841–847.

    Article  PubMed  CAS  Google Scholar 

  143. Koshimizu, U., Taga, T., Watanabe, M., et al. (1996) Functional requirement of gp130 mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells, Development 122, 1235–1242.

    PubMed  CAS  Google Scholar 

  144. Shamblott, M. J., Axelman, J., Wang, S., et al. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells, Proc. Natl. Acad. Sci. USA 95, 13,726–13, 731.

    Google Scholar 

  145. Surani, A. (2001) Reprogramming of genome function through epigenetic inheritance, Nature 414, 122–128.

    Article  PubMed  CAS  Google Scholar 

  146. Tada, M., Tada, T., Lefebvre, L., Barton, S. C., and Surani, M. A. (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells, EMBO J. 16, 6510–6520.

    Article  PubMed  CAS  Google Scholar 

  147. Tada, T. and Tada, M. (2001) Toti-/pluripotent stem cells and epigenetic modification, Cell Struct. Funct. 26, 149–160.

    Article  PubMed  CAS  Google Scholar 

  148. Mitsuya, K., Meguro, M., Sui, H., et al. (1998) Epigenetic reprogramming of the human H19 gene in mouse embryonic cells does not erase the primary parental imprint, Genes Cells 3, 245–255.

    Article  PubMed  CAS  Google Scholar 

  149. van Gurp, R. J., Oosterhuis, J. W., Kalscheuer, V., Mariman, E. C., and Looijenga, L. H. (1994) Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors,.1. Natl. Cancer Inst. 86, 1070–1074.

    Article  Google Scholar 

  150. Saltou, M., Barton, S. C., and Surani, M. A. (2002) A molecular programme for specification of germ cell fate in mice, Nature 418, 293–300.

    Article  CAS  Google Scholar 

  151. Clarke, D. and Frisen, J. (2001) Differentiation potential of adult stem cells, Curr. Opin. Genet. Dey. 11, 575–580.

    Article  CAS  Google Scholar 

  152. Oosterhuis, J. W., Looijenga, L. H., van Echten, J., and de Jong, B. (1997) Chromosomal constitution and developmental potential of human germ cell tumors and teratomas, Cancer Genet. Cytogenet. 95, 96–102.

    Article  PubMed  CAS  Google Scholar 

  153. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow, Nature 418, 41–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Draper, J.S., Moore, H., Andrews, P.W. (2003). Embryonal Carcinoma Cells. In: Chiu, A.Y., Rao, M.S. (eds) Human Embryonic Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-423-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-423-8_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-484-5

  • Online ISBN: 978-1-59259-423-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics