Skip to main content

A Method for Targeted Nonviral siRNA Delivery in Cancer and Inflammatory Diseases

  • Protocol
  • First Online:
Drug Delivery Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2059))

Abstract

Small interfering RNA (siRNA)-based therapy has been subject of intense research since the discovery of RNA interference (RNAi), providing a tool to potentially silence any chosen gene. Nevertheless, efficient delivery still presents a major hurdle to translating this promising technology into medical practice. Here, we describe a straightforward method to prepare and characterize an effective delivery system consisting of low-molecular-weight polyethylenimine (PEI) and transferrin (Tf). Tf-PEI polyplexes are not only able to successfully transport and protect the sensitive nucleic acid payload from degradation but also to selectively deliver the siRNA to transferrin receptor (TfR)-overexpressing cells, playing key roles in the pathology of numerous cancer types as well as inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mocellin S, Provenzano M (2004) RNA interference: learning gene knock-down from cell physiology. J Transl Med 2(1):39. https://doi.org/10.1186/1479-5876-2-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G (2015) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119. https://doi.org/10.1016/j.addr.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoy SM (2018) Patisiran: first global approval. Drugs 78(15):1625–1631. https://doi.org/10.1007/s40265-018-0983-6

    Article  CAS  PubMed  Google Scholar 

  4. Kandil R, Merkel OM (2016) Therapeutic delivery of RNA effectors: diseases affecting the respiratory system. Pharmazie 71(1):21–26

    CAS  PubMed  Google Scholar 

  5. Merkel OM, Rubinstein I, Kissel T (2014) siRNA delivery to the lung: what’s new? Adv Drug Deliv Rev 75C:112–128. https://doi.org/10.1016/j.addr.2014.05.018

    Article  CAS  Google Scholar 

  6. Maeda H (2012) Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc Jpn Acad Ser B Phys Biol Sci 88(3):53–71

    Article  CAS  Google Scholar 

  7. Nakamura Y, Mochida A, Choyke PL, Kobayashi H (2016) Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 27(10):2225–2238. https://doi.org/10.1021/acs.bioconjchem.6b00437

    Article  CAS  Google Scholar 

  8. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  9. Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K (2014) Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 9:2539–2555. https://doi.org/10.2147/IJN.S47129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sofou S, Sgouros G (2008) Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 5(2):189–204. https://doi.org/10.1517/17425247.5.2.189

    Article  CAS  PubMed  Google Scholar 

  11. Eloy JO, Petrilli R, Raspantini GL, Lee RJ (2018) Targeted liposomes for siRNA delivery to cancer. Curr Pharm Des 24(23):2664–2672. https://doi.org/10.2174/1381612824666180807121935

    Article  CAS  PubMed  Google Scholar 

  12. Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY, Helguera G, Penichet ML (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 1820(3):291–317. https://doi.org/10.1016/j.bbagen.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  13. Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P (2018) Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 8(6):916–931

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lakkadwala S, Singh J (2018) Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf B Biointerfaces 173:27–35. https://doi.org/10.1016/j.colsurfb.2018.09.047

    Article  CAS  PubMed  Google Scholar 

  15. Xie Y, Kim NH, Nadithe V, Schalk D, Thakur A, Kilic A, Lum LG, Bassett DJ, Merkel OM (2016) Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release 229:120–129. https://doi.org/10.1016/j.jconrel.2016.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fra AM, Williamson E, Simons K, Parton RG (1994) Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269(49):30745–30748

    CAS  PubMed  Google Scholar 

  17. Movassaghian S, Xie Y, Hildebrandt C, Rosati R, Li Y, Kim NH, Conti DS, da Rocha SR, Yang ZQ, Merkel OM (2016) Post-transcriptional regulation of the GASC1 oncogene with active tumor-targeted siRNA-nanoparticles. Mol Pharm 13(8):2605–2621. https://doi.org/10.1021/acs.molpharmaceut.5b00948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the ERC Starting Grant ERC-2014-StG—637830 “Novel Asthma Therapy.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Merkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kandil, R., Xie, Y., Mehta, A., Merkel, O. (2020). A Method for Targeted Nonviral siRNA Delivery in Cancer and Inflammatory Diseases. In: Jain, K. (eds) Drug Delivery Systems. Methods in Molecular Biology, vol 2059. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9798-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9798-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9797-8

  • Online ISBN: 978-1-4939-9798-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics