Skip to main content

Guidelines for the Detection of NADPH Oxidases by Immunoblot and RT-qPCR

  • Protocol
  • First Online:
NADPH Oxidases

Abstract

The identification of NADPH oxidase (NOX) isoforms in tissues is essential for interpreting experiments and for next step decisions regarding cell lines, animal models, and targeted drug design. Two basic methods, immunoblotting and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), are important to monitor NOX protein and messenger RNA (mRNA) levels, respectively, for a range of investigations from understanding cell signaling events to judging NOX inhibitor efficacies. For many other genes that are expressed in high abundance, these methods may seem rather simple. However, detecting the low expression levels of endogenous NOX/DUOX is difficult and can be frustrating, so some guidelines would be helpful to those who are facing difficulties. One reason why detection is so difficult is the limited availability of vetted NOX/DUOX antibodies. Many of the commercial antibodies do not perform well in our hands, and dependable antibodies, often generated by academic laboratories, are in limited supply. Another problem is the growing trend in the NOX literature to omit end-user validation of antibodies by not providing appropriate positive and negative controls. With regard to NOX mRNA levels, knockdown of NOX/DUOX has been reported in cell lines with very low endogenous expression (C q values ≥30) or in cell lines devoid of the targeted NOX isoform (e.g., NOX4 expression in NCI-60 cancer cell panel cell line 786–0). These publications propagate misinformation and hinder progress in understanding NOX/DUOX function. This chapter provides overdue guidelines on how to validate a NOX antibody and provides general methodologies to prepare samples for optimal detection. It also includes validated methodology to perform RT-qPCR for the measurement of NOX mRNA levels, and we suggest that RT-qPCR should be performed prior to embarking on NOX protein detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenhofer S, Kleikers PW, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K, Schmidt HH (2012) The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 69(14):2327–2343. https://doi.org/10.1007/s00018-012-1010-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seredenina T, Nayernia Z, Sorce S, Maghzal GJ, Filippova A, Ling SC, Basset O, Plastre O, Daali Y, Rushing EJ, Giordana MT, Cleveland DW, Aguzzi A, Stocker R, Krause KH, Jaquet V (2016) Evaluation of NADPH oxidases as drug targets in a mouse model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 97:95–108. https://doi.org/10.1016/j.freeradbiomed.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  3. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  4. Kawahara T, Lambeth JD (2008) Phosphatidylinositol (4,5)-bisphosphate modulates Nox5 localization via an N-terminal polybasic region. Mol Biol Cell 19(10):4020–4031. https://doi.org/10.1091/mbc.E07-12-1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun Y, Li Y, Luo D, Liao DJ (2012) Pseudogenes as weaknesses of ACTB (Actb) and GAPDH (Gapdh) used as reference genes in reverse transcription and polymerase chain reactions. PLoS One 7(8):e41659. https://doi.org/10.1371/journal.pone.0041659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dho SH, Kim JY, Kwon ES, Lim JC, Park SS, Kwon KS (2015) NOX5-L can stimulate proliferation and apoptosis depending on its levels and cellular context, determining cancer cell susceptibility to cisplatin. Oncotarget 6(36):39235–39246. https://doi.org/10.18632/oncotarget.5743

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsumoto M, Katsuyama M, Iwata K, Ibi M, Zhang J, Zhu K, Nauseef WM, Yabe-Nishimura C (2014) Characterization of N-glycosylation sites on the extracellular domain of NOX1/NADPH oxidase. Free Radic Biol Med 68:196–204. https://doi.org/10.1016/j.freeradbiomed.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  8. Bedard K, Jaquet V, Krause KH (2012) NOX5: from basic biology to signaling and disease. Free Radic Biol Med 52(4):725–734. https://doi.org/10.1016/j.freeradbiomed.2011.11.023

    Article  CAS  PubMed  Google Scholar 

  9. Chen F, Wang Y, Barman S, Fulton DJ (2015) Enzymatic regulation and functional relevance of NOX5. Curr Pharm Des 21(41):5999–6008

    Article  CAS  Google Scholar 

  10. Jacob F, Guertler R, Naim S, Nixdorf S, Fedier A, Hacker NF, Heinzelmann-Schwarz V (2013) Careful selection of reference genes is required for reliable performance of RT-qPCR in human normal and cancer cell lines. PLoS One 8(3):e59180. https://doi.org/10.1371/journal.pone.0059180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doroshow JH, Juhasz A, Ge Y, Holbeck S, Lu J, Antony S, Wu Y, Jiang G, Roy K (2012) Antiproliferative mechanisms of action of the flavin dehydrogenase inhibitors diphenylene iodonium and di-2-thienyliodonium based on molecular profiling of the NCI-60 human tumor cell panel. Biochem Pharmacol 83(9):1195–1207. https://doi.org/10.1016/j.bcp.2012.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Durr P, Pircher H, Shah AM, Roy K, Doroshow JH (2017) Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 13:182–195. https://doi.org/10.1016/j.redox.2017.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laurent E, McCoy JW 3rd, Macina RA, Liu W, Cheng G, Robine S, Papkoff J, Lambeth JD (2008) Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras. Int J Cancer 123(1):100–107. https://doi.org/10.1002/ijc.23423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burritt JB, Quinn MT, Jutila MA, Bond CW, Jesaitis AJ (1995) Topological mapping of neutrophil cytochrome b epitopes with phage-display libraries. J Biol Chem 270(28):16974–16980

    Article  CAS  Google Scholar 

  15. Nakamura M, Murakami M, Koga T, Tanaka Y, Minakami S (1987) Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood 69(5):1404–1408

    CAS  PubMed  Google Scholar 

  16. Kawai C, Yamauchi A, Kuribayashi F (2018) Monoclonal antibody 7D5 recognizes the R147 epitope on the gp91(phox), phagocyte flavocytochrome b558 large subunit. Microbiol Immunol 62(4):269–280. https://doi.org/10.1111/1348-0421.12584

    Article  CAS  PubMed  Google Scholar 

  17. Verhoeven AJ, Bolscher BG, Meerhof LJ, van Zwieten R, Keijer J, Weening RS, Roos D (1989) Characterization of two monoclonal antibodies against cytochrome b558 of human neutrophils. Blood 73(6):1686–1694

    CAS  PubMed  Google Scholar 

  18. Seredenina T, Sorce S, Herrmann FR, Ma Mulone XJ, Plastre O, Aguzzi A, Jaquet V, Krause KH (2017) Decreased NOX2 expression in the brain of patients with bipolar disorder: association with valproic acid prescription and substance abuse. Transl Psychiatry 7(8):e1206. https://doi.org/10.1038/tp.2017.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor RM, Maaty WS, Lord CI, Hamilton T, Burritt JB, Bothner B, Jesaitis AJ (2007) Cloning, sequence analysis and confirmation of derived gene sequences for three epitope-mapped monoclonal antibodies against human phagocyte flavocytochrome b. Mol Immunol 44(4):625–637. https://doi.org/10.1016/j.molimm.2005.10.022

    Article  CAS  PubMed  Google Scholar 

  20. Sorce S, Nuvolone M, Keller A, Falsig J, Varol A, Schwarz P, Bieri M, Budka H, Aguzzi A (2014) The role of the NADPH oxidase NOX2 in prion pathogenesis. PLoS Pathog 10(12):e1004531. https://doi.org/10.1371/journal.ppat.1004531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anilkumar N, Weber R, Zhang M, Brewer A, Shah AM (2008) Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28(7):1347–1354. https://doi.org/10.1161/ATVBAHA.108.164277

    Article  CAS  PubMed  Google Scholar 

  22. Holl M, Koziel R, Schafer G, Pircher H, Pauck A, Hermann M, Klocker H, Jansen-Durr P, Sampson N (2016) ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Mol Carcinog 55(1):27–39. https://doi.org/10.1002/mc.22255

    Article  CAS  PubMed  Google Scholar 

  23. von Lohneysen K, Noack D, Jesaitis AJ, Dinauer MC, Knaus UG (2008) Mutational analysis reveals distinct features of the Nox4-p22 phox complex. J Biol Chem 283(50):35273–35282. https://doi.org/10.1074/jbc.M804200200

    Article  CAS  Google Scholar 

  24. El Jamali A, Valente AJ, Lechleiter JD, Gamez MJ, Pearson DW, Nauseef WM, Clark RA (2008) Novel redox-dependent regulation of NOX5 by the tyrosine kinase c-Abl. Free Radic Biol Med 44(5):868–881. https://doi.org/10.1016/j.freeradbiomed.2007.11.020

    Article  CAS  PubMed  Google Scholar 

  25. Marzaioli V, Hurtado-Nedelec M, Pintard C, Tlili A, Marie JC, Monteiro RC, Gougerot-Pocidalo MA, Dang PM, El-Benna J (2017) NOX5 and p22phox are 2 novel regulators of human monocytic differentiation into dendritic cells. Blood 130(15):1734–1745. https://doi.org/10.1182/blood-2016-10-746347

    Article  CAS  PubMed  Google Scholar 

  26. Antony S, Wu Y, Hewitt SM, Anver MR, Butcher D, Jiang G, Meitzler JL, Liu H, Juhasz A, Lu J, Roy KK, Doroshow JH (2013) Characterization of NADPH oxidase 5 expression in human tumors and tumor cell lines with a novel mouse monoclonal antibody. Free Radic Biol Med 65:497–508. https://doi.org/10.1016/j.freeradbiomed.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  27. Pacquelet S, Lehmann M, Luxen S, Regazzoni K, Frausto M, Noack D, Knaus UG (2008) Inhibitory action of NoxA1 on dual oxidase activity in airway cells. J Biol Chem 283(36):24649–24658. https://doi.org/10.1074/jbc.M709108200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luxen S, Noack D, Frausto M, Davanture S, Torbett BE, Knaus UG (2009) Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells. J Cell Sci 122. (Pt 8:1238–1247. https://doi.org/10.1242/jcs.044123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G, Dumont JE, Miot F (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275(30):23227–23233. https://doi.org/10.1074/jbc.M000916200

    Article  PubMed  Google Scholar 

  30. Caillou B, Dupuy C, Lacroix L, Nocera M, Talbot M, Ohayon R, Deme D, Bidart JM, Schlumberger M, Virion A (2001) Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues. J Clin Endocrinol Metab 86(7):3351–3358. https://doi.org/10.1210/jcem.86.7.7646

    Article  CAS  PubMed  Google Scholar 

  31. Ameziane-El-Hassani R, Talbot M, de Souza Dos Santos MC, Al Ghuzlan A, Hartl D, Bidart JM, De Deken X, Miot F, Diallo I, de Vathaire F, Schlumberger M, Dupuy C (2015) NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc Natl Acad Sci U S A 112(16):5051–5056. https://doi.org/10.1073/pnas.1420707112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El Hassani RA, Benfares N, Caillou B, Talbot M, Sabourin JC, Belotte V, Morand S, Gnidehou S, Agnandji D, Ohayon R, Kaniewski J, Noel-Hudson MS, Bidart JM, Schlumberger M, Virion A, Dupuy C (2005) Dual oxidase 2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 288(5):G933–G942. https://doi.org/10.1152/ajpgi.00198.2004

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y, Antony S, Hewitt SM, Jiang G, Yang SX, Meitzler JL, Juhasz A, Lu J, Liu H, Doroshow JH, Roy K (2013) Functional activity and tumor-specific expression of dual oxidase 2 in pancreatic cancer cells and human malignancies characterized with a novel monoclonal antibody. Int J Oncol 42(4):1229–1238. https://doi.org/10.3892/ijo.2013.1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Leo FR, Ulman KV, Davis AR, Jutila KL, Quinn MT (1996) Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem 271(29):17013–17020

    Article  Google Scholar 

Download references

Acknowledgments

We thank for their generous support of this work: Dr. Ajay Shah and Dr. Pidder Jansen-Dürr for the NOX4 polyclonal rabbit antibodies; Dr. William Kaelin for the RCC4 parent cell line; Dr. Ralf Brandes for HEK 293 cells stably expressing NOX4 or NOX1; and Dr. Vincent Jaquet, Dr. Mark Quinn, Dr. Corinne Dupuy, Dr. Chihiro Yabe-Nishimura, Dr. Misaki Matsumoto, Dr. Ulla Knaus, and Dr. William Nauseef for contributing specific information for some of the NOX/DUOX antibodies and reviewing the manuscript. We also thank the editors, Dr. Ulla Knaus and Dr. Tom Leto, for the invitation to contribute a chapter to this book.

This chapter is dedicated to the late Dr. Gary Bokoch (The Scripps Research Institute, La Jolla, CA, USA), who made many contributions to the field of NADPH oxidases and served as a post-doctoral mentor of both Dr. Becky Diebold and Dr. Ulla Knaus.

This work was made possible by funding from the National Institute of Health, USA, and the American Heart Association. XDD is supported by the “Fonds de la Recherche Scientifique” (FRS-FNRS), the “Fonds Docteur J.P. Naets” managed by the “Fondation Roi Baudouin,” and the “Fondation Tournay-Solvay.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Becky A. Diebold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diebold, B.A. et al. (2019). Guidelines for the Detection of NADPH Oxidases by Immunoblot and RT-qPCR. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics