Skip to main content

Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs

  • Protocol
  • First Online:
RNA Interference and Cancer Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1974))

Abstract

In RNA interference (RNAi), silencing is achieved through the interaction of double-stranded small interfering RNAs (siRNAs) with essential RNAi pathway proteins, including Argonaute 2 (Ago2). Based on these interactions, one strand of the siRNA is loaded into Ago2 forming the active RNA-induced silencing complex (RISC). Optimal siRNAs maximize RISC activity against the intended target and minimize off-target silencing. To achieve the desired activity and specificity, selection of the appropriate siRNA strand for loading into Ago2 is essential. Here, we provide a protocol to quantify the relative loading of individual siRNA strands into Ago2, one factor in determining the capacity of a siRNA to achieve silencing activity and target specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56(1):103–122. https://doi.org/10.1146/annurev-pharmtox-010715-103633

    Article  CAS  PubMed  Google Scholar 

  2. Scherman D, Rousseau A, Bigey P et al (2017) Genetic pharmacology: progresses in siRNA delivery and therapeutic applications. Gene Ther 24(3):151–156. https://doi.org/10.1038/gt.2017.6

    Article  CAS  PubMed  Google Scholar 

  3. Yoda M, Kawamata T, Paroo Z et al (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  4. Liu JD, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  CAS  PubMed  Google Scholar 

  5. Rivas FV, Tolia NH, Song JJ et al (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12(4):340–349

    Article  CAS  PubMed  Google Scholar 

  6. Martinez J, Patkaniowska A, Urlaub H et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574

    Article  CAS  PubMed  Google Scholar 

  7. Elbashir SM, Harborth J, Weber K et al (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26(2):199–213

    Article  CAS  PubMed  Google Scholar 

  8. Nakanishi K (2016) Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA 7(5):637–660. https://doi.org/10.1002/wrna.1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Angart PA, Carlson RJ, Adu-Berchie K et al (2016) Terminal duplex stability and nucleotide identity differentially control siRNA loading and activity in RNA interference. Nucleic Acid Ther 26(5):309–317. https://doi.org/10.1089/nat.2016.0612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwarz D, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    Article  CAS  PubMed  Google Scholar 

  11. Noland CL, Ma E, Doudna JA (2011) siRNA repositioning for guide strand selection by human dicer complexes. Mol Cell 43(1):110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakurai K, Amarzguioui M, Kim D et al (2011) A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res 39(4):1510–1525

    Article  CAS  PubMed  Google Scholar 

  13. Ozcan G, Ozpolat B, Coleman RL et al (2015) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119. https://doi.org/10.1016/j.addr.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16(9):543–552. https://doi.org/10.1038/nrg3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beitzinger M, Meister G (2011) Experimental identification of microRNA targets by immunoprecipitation of Argonaute protein complexes. In: Dalmay T (ed) MicroRNAs in development, vol 732. Humana, Totowa, NJ, pp 153–167

    Chapter  Google Scholar 

  16. Chen CF, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  Google Scholar 

  17. Varkonyi-Gasic E, Wu R, Wood M et al (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tang F, Hajkova P, Barton SC et al (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2):e9. https://doi.org/10.1093/nar/gnj009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kramer MF (2011) Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. Chapter 15:Unit 15.10

    Google Scholar 

  20. Jung U, Jiang X, Kaufmann SH et al (2013) A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA. RNA 19(12):1864–1873. https://doi.org/10.1261/rna.040501.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50(4):244–249. https://doi.org/10.1016/j.ymeth.2010.01.026

    Article  CAS  PubMed  Google Scholar 

  22. Czimmerer Z, Hulvely J, Simandi Z et al (2013) A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS One 8(1):e55168. https://doi.org/10.1371/journal.pone.0055168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14(5):844–852. https://doi.org/10.1261/rna.939908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  25. Caffrey DR, Zhao J, Song Z et al (2011) siRNA off-target effects can be reduced at concentrations that match their individual potency. PLoS One 6(7):e21503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim Y-K, Yeo J, Ha M et al (2012) Retraction notice to: cell adhesion-dependent control of microRNA decay. Mol Cell 46(6):896

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patrick Walton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Angart, P.A., Adu-Berchie, K., Carlson, R.J., Vocelle, D.B., Chan, C., Walton, S.P. (2019). Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs. In: Dinesh Kumar, L. (eds) RNA Interference and Cancer Therapy. Methods in Molecular Biology, vol 1974. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9220-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9220-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9219-5

  • Online ISBN: 978-1-4939-9220-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics