Skip to main content

Hepatotoxicity in Zebrafish Larvae

  • Protocol
  • First Online:
Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1965))

Abstract

Zebrafish (Danio rerio) larvae are a uniquely powerful model system which investigate the effects of toxicant exposure on liver development and function. Manufacturing processes and development of new synthetic compounds increased rapidly since the middle of the twentieth century, resulting in widespread exposure to environmental toxicants. This is compounded by the shift in the global burden of disease from infectious agents to chronic disease, particularly in industrialized nations, which increases the need to investigate the long-term and transgenerational effects of environmental exposures on human health. Zebrafish provide an excellent model to investigate the mechanisms of action of environmental pollutants given their large-scale embryo production and rapid development, which allow for short-term assessment of toxicity in a whole animal system. Here we describe methods for the use of zebrafish to study hepatotoxicity and liver disease induced by chemical toxicants. Many of the genetic, molecular, and cellular processes are conserved between zebrafish and mammals, enabling translation to human populations and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roosen-Runge E (1937) Observations of the early development of the zebra fish, Brachydanio rerio. Anat Rec 70(Suppl 1):103

    Google Scholar 

  2. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  Google Scholar 

  3. Pham D-H (2017) Using zebrafish to model liver diseases-Where do we stand? Curr Pathobiol Rep 5(2):207–221. https://doi.org/10.1007/s401390170141y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stanton MF (1965) Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish, brachydanio rerio. J Natl Cancer Inst 34(1):117–130

    Article  CAS  Google Scholar 

  5. Streisinger G (1983) Extrapolations from species to species and from various cell types in assessing risks from chemical mutagens. Mutat Res 114(1):93–105

    Article  CAS  Google Scholar 

  6. Gamse JT, Gorelick DA (2016) Mixtures, metabolites, and mechanisms: understanding toxicology using zebrafish. Zebrafish 13(5):377–378

    Article  Google Scholar 

  7. Li C, Li P, Tan YM, Lam SH, Chan EC, Gong Z (2016) Metabolomic characterizations of liver injury caused by acute arsenic toxicity in zebrafish. PLoS One 11(3):e0151225. https://doi.org/10.1371/journal.pone.0151225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bambino K, Zhang C, Austin C et al (2018) Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech 11(2):dmm031575. https://doi.org/10.1242/dmm.031575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collins FS, Gray GM, Bucher JR (2008) Toxicology. Transforming environmental health protection. Science 319(5865):906–907

    Article  CAS  Google Scholar 

  10. Selderslaghs IW, Blust R, Witters HE (2012) Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod Toxicol 33(2):142–154

    Article  CAS  Google Scholar 

  11. Goldstone JV, McArthur AG, Kubota A et al (2010) Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics 11(1):1–21

    Article  Google Scholar 

  12. Saad M, Cavanaugh K, Verbueken E et al (2016) Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3. J Toxicol Sci 41(1):1–11

    Article  CAS  Google Scholar 

  13. Wahlang B, Beier JI, Clair HB et al (2013) Toxicant-associated steatohepatitis. Toxicol Pathol 41(2):343–360

    Article  Google Scholar 

  14. Al-Eryani L, Wahlang B, Falkner KC et al (2015) Identification of environmental chemicals associated with the development of toxicant-associated fatty liver disease in rodents. Toxicol Pathol 43(4):482–497

    Article  CAS  Google Scholar 

  15. He J-H, Guo S-Y, Zhu F et al (2013) A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity. J Pharmacol Toxicol Methods 67(1):25–32

    Article  CAS  Google Scholar 

  16. Verstraelen S, Peers B, Maho W et al (2016) Phenotypic and biomarker evaluation of zebrafish larvae as an alternative model to predict mammalian hepatotoxicity. J Appl Toxicol 36(9):1194–1206

    Article  CAS  Google Scholar 

  17. Mudbhary R, Hoshida Y, Chernyavskaya Y et al (2014) UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25(2):196–209

    Article  CAS  Google Scholar 

  18. Zhang X, Li C, Gong Z (2014) Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression. PLoS One 9(3):e91874. https://doi.org/10.1371/journal.pone.0091874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Korzh S, Pan X, Garcia-Lecea M et al (2008) Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8:84–84

    Article  Google Scholar 

  20. Yin C, Evason KJ, Maher JJ, Stainier DYR (2012) The basic helix-loop-helix transcription factor hand2 marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 56(5):1958–1970

    Article  CAS  Google Scholar 

  21. Clifton JD, Lucumi E, Myers MC et al (2010) Identification of novel inhibitors of dietary lipid absorption using zebrafish. PLoS One 5(8):e12386. https://doi.org/10.1371/journal.pone.0012386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farber SA, Pack M, Ho S-Y et al (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292(5520):1385–1388

    Article  CAS  Google Scholar 

  23. Ung CY, Lam SH, Hlaing MM et al (2010) Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genomics 11:212–212

    Article  Google Scholar 

  24. Paules R (2003) Phenotypic anchoring: linking cause and effect. Environ Health Perspect 111(6):A338–A339

    Article  Google Scholar 

  25. Poon KL, Wang X, Lee SGP et al (2017) Editor’s highlight: transgenic zebrafish reporter lines as alternative in vivo organ toxicity models. Toxicol Sci 156(1):133–148

    CAS  PubMed  Google Scholar 

  26. Xu H, Lam SH, Shen Y, Gong Z (2013) Genome-wide identification of molecular pathways and biomarkers in response to arsenic exposure in zebrafish liver. PLoS One 8(7):e68737. https://doi.org/10.1371/journal.pone.0068737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Timme-Laragy AR, Karchner SI, Hahn ME (2012) Gene knockdown by morpholino-modified oligonucleotides in the Zebrafish (Danio rerio) model: applications for developmental toxicology. In: Harris C, Hansen JM (eds) Developmental toxicology: methods and protocols. Humana Press, Totowa, NJ

    Google Scholar 

  28. Parant JM, Yeh J-RJ (2016) Approaches to inactivate genes in zebrafish. In: Langenau DM (ed) Cancer and zebrafish: advances in experimental medicine and biology, vol 916. Springer, Cham

    Google Scholar 

  29. Ablain J, Durand Ellen M, Yang S, Zhou Y, Zon Leonard I (2015) A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 32(6):756–764

    Article  CAS  Google Scholar 

  30. Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3099

    Article  CAS  Google Scholar 

  31. Gioia R, Tonelli F, Ceppi I et al (2017) The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta. Hum Mol Genet 26(15):2897–2911

    Article  CAS  Google Scholar 

  32. Tsedensodnom O, Vacaru AM, Howarth DL, Yin C, Sadler KC (2013) Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease. Dis Model Mech 6(5):1213–1226. https://doi.org/10.1242/dmm.012195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Auer TO, Del Bene F (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69(2):142–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Deanna Benson, Dr. Nikos Tzavaras, and Dr. Sijie Hao at the Microscopy CoRE at the Icahn School of Medicine at Mount Sinai. All experiments were conducted in accordance within the guidelines of the Institutional Animal Care and Use Committee at the Icahn School of Medicine at Mount Sinai. We thank Jill Gregory, CMI, and FAMI for graphic design. This work is funded by K08 DK101340-01A1, Gilead Liver Research Scholars Award, Art in Giving/The Rachel Molly Markoff Foundation, and The Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai to J.C., T32 HD049311-09 and P30ES023515 to K.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bambino, K., Morrison, J., Chu, J. (2019). Hepatotoxicity in Zebrafish Larvae. In: Hansen, J., Winn, L. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 1965. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9182-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9182-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9181-5

  • Online ISBN: 978-1-4939-9182-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics