Skip to main content

CRISPR-Based Lentiviral Knockout Libraries for Functional Genomic Screening and Identification of Phenotype-Related Genes

  • Protocol
  • First Online:
CRISPR Gene Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1961))

Abstract

Adaptation of the CRISPR system has enabled scientists to probe the genome and interfere with gene function at an unprecedented scale. Adding to the use of CRISPR for generation of individual gene knockout, which is by now conventional, the CRISPR system enables high-throughput functional screening of the genome. By combining the integrative properties of lentiviral vector delivery with the disruptive nature of the CRISPR system, genome-wide CRISPR libraries provide the power to screen among thousands of genes despite the high complexity of the entire genome and identify a list of genes potentially affecting a certain phenotype. Genome-wide CRISPR screening is an advanced technology compiling numerous practical aspects and a series of molecular biology techniques. In this protocol, we describe all steps toward implementing CRISPR knockout screens in your research; we describe the core procedures and key information as well as some tricks and tips needed to successfully perform a CRISPR screen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  2. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9(7):554–566

    Article  CAS  Google Scholar 

  3. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87

    Article  CAS  Google Scholar 

  4. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191

    Article  CAS  Google Scholar 

  5. Ryø LB, Thomsen EA, Mikkelsen JG (2019) Production and validation of lentiviral vectors for CRISPR/Cas9 delivery. In: Luo Y (ed) CRISPR gene editing, Methods in molecular biology, vol 1961. Springer, NewYork

    Google Scholar 

  6. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784

    Article  CAS  Google Scholar 

  7. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  8. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10–12

    Google Scholar 

  9. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  Google Scholar 

  10. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F et al (2014) MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15(12):554

    Article  Google Scholar 

  11. Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y et al (2016) The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534(7609):652–657

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the laboratories of Feng Zhang and John G. Doench for making constructs and libraries available through Addgene. Genome-wide CRISPR screens performed in the laboratory of Jacob Giehm Mikkelsen are made possible through funding by the Danish Council for Independent Research │ Medical Sciences (grant DFF-4004-00220), The Lundbeck Foundation (grant R126-2012-12456), the Novo Nordisk Foundation, Else og Mogens Wedell-Wedellsborgs Fond, Einar Willumsens Mindelegat, Emil C. Hertz og hustru Inger Hertz’s Fond, Holger Hjortenberg og Hustru Dagmar Hjortenbergs Fond, Krista og Viggo Petersens Fond, and Andersen-Isted Fonden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Giehm Mikkelsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thomsen, E.A., Mikkelsen, J.G. (2019). CRISPR-Based Lentiviral Knockout Libraries for Functional Genomic Screening and Identification of Phenotype-Related Genes. In: Luo, Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, vol 1961. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9170-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9170-9_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9169-3

  • Online ISBN: 978-1-4939-9170-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics