Skip to main content

Single-Molecule FRET Detection of Early-Stage Conformations in α-Synuclein Aggregation

  • Protocol
  • First Online:
Alpha-Synuclein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1948))

Abstract

Misfolding and aggregation of α-synuclein are linked to many neurodegenerative disorders, including Parkinson’s and Alzheimer’s disease. Despite intense research efforts, detailed structural characterization of early conformational transitions that initiate and drive α-synuclein aggregation remains elusive often due to the low sensitivity and ensemble averaging of commonly used techniques. Single-molecule Förster resonance energy transfer (smFRET) provides unique advantages in detecting minor conformations that initiate protein pathologic aggregation. In this chapter, we describe an smFRET-based method for characterizing early conformational conversions that are responsible for α-synuclein self-assembly and aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savica R, Boeve BF, Logroscino G (2016) Epidemiology of alpha-synucleinopathies: from Parkinson disease to dementia with Lewy bodies. Handb Clin Neurol 138:153–158

    Article  CAS  Google Scholar 

  2. Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK (2017) Alpha-synuclein aggregation and its modulation. Int J Biol Macromol 100:37–54

    Article  CAS  Google Scholar 

  3. Ferreon AC, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci U S A 106(14):5645–5650

    Article  CAS  Google Scholar 

  4. Ferreon AC, Deniz AA (2007) α-Synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation. Biochemistry 46(15):4499–4509

    Article  CAS  Google Scholar 

  5. Moosa MM, Ferreon AC, Deniz AA (2015) Forced folding of a disordered protein accesses an alternative folding landscape. ChemPhysChem 16(1):90–94

    Article  CAS  Google Scholar 

  6. Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS, Dawson PE, Schultz PG, Weiss S (2000) Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A 97(10):5179–5184

    Article  CAS  Google Scholar 

  7. Michalet X, Weiss S (2002) Single-molecule spectroscopy and microscopy. C R Phys 3(5):619–644

    Article  CAS  Google Scholar 

  8. Trexler AJ, Rhoades E (2009) Alpha-synuclein binds large unilamellar vesicles as an extended helix. Biochemistry 48(11):2304–2306

    Article  CAS  Google Scholar 

  9. Sun Y, Coskun U, Tsoi PS, Ferreon JC, Ferreon AC, Barbieri B, Liao S-CJ (2017) Quantitative multi-parameter analysis of single molecule dynamics by PIE FastFLIM microscopy. In: Periasamy A, So PTC, König K, Xie XS (eds) SPIE BiOS. SPIE, San Francisco, p 10

    Google Scholar 

  10. Tsoi PS, Choi KJ, Leonard PG, Sizovs A, Moosa MM, MacKenzie KR, Ferreon JC, Ferreon ACM (2017) The N-terminal domain of ALS-linked TDP-43 assembles without misfolding. Angew Chem Int Ed Engl 56(41):12590–12593

    Article  CAS  Google Scholar 

  11. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412

    Article  CAS  Google Scholar 

  12. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in α-synuclein fibril formation. J Biol Chem 276(14):10737–10744

    Article  CAS  Google Scholar 

  13. Hoyer W, Antony T, Cherny D, Heim G, Jovin TM, Subramaniam V (2002) Dependence of alpha-synuclein aggregate morphology on solution conditions. J Mol Biol 322(2):383–393

    Article  CAS  Google Scholar 

  14. Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, Urlaub H, Zweckstetter M, Kugler S, Melchior F, Bahr M, Weishaupt JH (2011) Sumoylation inhibits alpha-synuclein aggregation and toxicity. J Cell Biol 194(1):49–60

    Article  CAS  Google Scholar 

  15. Bartels T, Choi JG, Selkoe DJ (2011) Alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110

    Article  CAS  Google Scholar 

  16. Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TP, Linse S, Dobson CM (2014) Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proc Natl Acad Sci U S A 111(21):7671–7676

    Article  CAS  Google Scholar 

  17. Galvagnion C, Buell AK, Meisl G, Michaels TC, Vendruscolo M, Knowles TP, Dobson CM (2015) Lipid vesicles trigger alpha-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol 11(3):229–234

    Article  CAS  Google Scholar 

  18. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751(2):119–139

    Article  CAS  Google Scholar 

  19. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  CAS  Google Scholar 

  20. Blanchard JS (1984) Buffers for enzymes. Methods Enzymol 104:404–414

    Article  CAS  Google Scholar 

  21. Ferreon AC, Moran CR, Gambin Y, Deniz AA (2010) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179–204

    Article  CAS  Google Scholar 

  22. Ferreon AC, Moran CR, Ferreon JC, Deniz AA (2010) Alteration of the α-synuclein folding landscape by a mutation related to Parkinson's disease. Angew Chem Int Ed Engl 49(20):3469–3472

    Article  CAS  Google Scholar 

  23. Gambin Y, VanDelinder V, Ferreon AC, Lemke EA, Groisman A, Deniz AA (2011) Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat Methods 8(3):239–241

    Article  CAS  Google Scholar 

  24. Ferreon ACM, Moosa MM, Gambin Y, Deniz AA (2012) Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape. Proc Natl Acad Sci U S A 109(44):17826–17831

    Article  CAS  Google Scholar 

  25. Veldhuis G, Segers-Nolten I, Ferlemann E, Subramaniam V (2009) Single-molecule FRET reveals structural heterogeneity of SDS-bound alpha-synuclein. Chembiochem 10(3):436–439

    Article  CAS  Google Scholar 

  26. Trexler AJ, Rhoades E (2010) Single molecule characterization of alpha-synuclein in aggregation-prone states. Biophys J 99(9):3048–3055

    Article  CAS  Google Scholar 

  27. Banerjee PR, Moosa MM, Deniz AA (2016) Two-dimensional crowding uncovers a hidden conformation of alpha-Synuclein. Angew Chem Int Ed Engl 55(41):12789–12792

    Article  CAS  Google Scholar 

  28. Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117(24):10953–10964

    Article  CAS  Google Scholar 

  29. Schuler B, Müller-Späth S, Soranno A, Nettels D (2012) Application of confocal single-molecule FRET to intrinsically disordered proteins. In: Uversky VN, Dunker AK (eds) Intrinsically disordered protein analysis: Vol 2, Methods and experimental tools. Springer, New York, pp 21–45

    Chapter  Google Scholar 

  30. Uversky VN, Cooper E M, Bower KS, Li J, Fink AL (2002) Accelerated alpha-synuclein fibrillation in crowded milieu. FEBS Lett 515(1–3):99–103

    Article  CAS  Google Scholar 

  31. Roeters SJ, Iyer A, Pletikapic G, Kogan V, Subramaniam V, Woutersen S (2017) Evidence for Intramolecular antiparallel beta-sheet structure in alpha-synuclein fibrils from a combination of two-dimensional infrared spectroscopy and atomic force microscopy. Sci Rep 7:41051

    Article  CAS  Google Scholar 

  32. Hillger F, Nettels D, Dorsch S, Schuler B (2007) Detection and analysis of protein aggregation with confocal single molecule fluorescence spectroscopy. J Fluoresc 17(6):759–765

    Article  CAS  Google Scholar 

  33. Cremades N, Cohen SI, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TP, Dobson CM, Klenerman D (2012) Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 149(5):1048–1059

    Article  CAS  Google Scholar 

  34. Tosatto L, Horrocks MH, Dear AJ, Knowles TP, Dalla Serra M, Cremades N, Dobson CM, Klenerman D (2015) Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease genetically related mutants. Sci Rep 5:16696

    Article  CAS  Google Scholar 

  35. Varela JA, Rodrigues M, De S, Flagmeier P, Gandhi S, Dobson CM, Klenerman D, Lee SF (2018) Optical structural analysis of individual alpha-synuclein oligomers. Angew Chem Int Ed Engl 57(18):4886–4890

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by laboratory startup funds from the Baylor College of Medicine (A.C.M.F. and J.C.F.). The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Chris M. Ferreon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moosa, M.M., Ferreon, J.C., Ferreon, A.C.M. (2019). Single-Molecule FRET Detection of Early-Stage Conformations in α-Synuclein Aggregation. In: Bartels, T. (eds) Alpha-Synuclein. Methods in Molecular Biology, vol 1948. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9124-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9124-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9123-5

  • Online ISBN: 978-1-4939-9124-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics