Skip to main content

Assays on DNA Damage and Repair in CLL

  • Protocol
  • First Online:
Chronic Lymphocytic Leukemia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1881))

Abstract

Assays that measure DNA damage and repair are critical in evaluating the extent to which therapeutic agents damage DNA and in identifying whether DNA repair can limit the toxicity of chemotherapy. The COMET assays described in this guide should help readers evaluate single and double-strand breaks cause by chemotherapeutic agents and also monitor the ability of the cells to repair such damage. The EJDR assay described is a valuable tool to assess the ability of drugs and DNA repair proteins to modulate DNA repair capacity. Finally, the immunofluorescence assay described should allow accurate assessments of DNA damage and the kinetics of repair as measured by Ɣ-H2AX foci. This procedure can also be used to mechanistically investigate the recruitment of specific DNA damage and repair proteins in CLL cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byrd JC, Furman RR, Coutre SE et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369(1):32–42

    Article  CAS  Google Scholar 

  2. Hallek M (2015) Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hematol 90(5):446–460

    Article  CAS  Google Scholar 

  3. Shvidel L, Berrebi A (2016) Pitting new treatments for chronic lymphocytic leukemia against old ones: how do they fare? Expert Rev Hematol 9(3):245–254

    Article  CAS  Google Scholar 

  4. Cramer P, Langerbeins P, Eichhorst B, Hallek M (2016) Advances in first-line treatment of chronic lymphocytic leukemia: current recommendations on management and first-line treatment by the German CLL study group (GCLLSG). Eur J Haematol 96(1):9–18

    Article  Google Scholar 

  5. Cramer P, Langerbeins P, Fischer K, Eichhorst B, Hallek M, Goede V (2016) Dose-reduced fludarabine, cyclophosphamide and rituximab (FCR) in older patients with chronic lymphocytic leukemia: does one size fit all? Leuk Lymphoma 57(5):987–990

    Article  Google Scholar 

  6. Fischer K, Bahlo J, Fink AM et al (2016) Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 127(2):208–215

    Article  CAS  Google Scholar 

  7. Kutsch N, Busch R, Bahlo J et al (2017) FCR front-line therapy and quality of life in patients with chronic lymphocytic leukemia. Leuk Lymphoma 58(2):399–407

    Article  CAS  Google Scholar 

  8. Smolej L (2016) Refractory chronic lymphocytic leukemia: a therapeutic challenge. Curr Cancer Drug Targets 16(8):701–709

    Article  CAS  Google Scholar 

  9. Starr P (2016) Idelalisib improves survival when added to bendamustine plus rituximab in patients with CLL. Am Health Drug Benefits 9(Spec Issue):17

    PubMed  PubMed Central  Google Scholar 

  10. Al-Sawaf O, Cramer P, Goede V, Hallek M, Pflug N (2017) Bendamustine and its role in the treatment of unfit patients with chronic lymphocytic leukaemia: a perspective review. Ther Adv Hematol 8(6):197–205

    Article  CAS  Google Scholar 

  11. Brown JR, Hallek MJ, Pagel JM (2016) Chemoimmunotherapy versus targeted treatment in chronic lymphocytic leukemia: when, how long, how much, and in which combination? Am Soc Clin Oncol Educ Book 35:e387–e398 American Society of Clinical Oncology Meeting

    Article  Google Scholar 

  12. Brown JR, O'Brien S, Kingsley CD et al (2015) Obinutuzumab plus fludarabine/cyclophosphamide or bendamustine in the initial therapy of CLL patients: the phase 1b GALTON trial. Blood 125(18):2779–2785

    Article  CAS  Google Scholar 

  13. Cramer P, Isfort S, Bahlo J et al (2015) Outcome of advanced chronic lymphocytic leukemia following different first-line and relapse therapies: a meta-analysis of five prospective trials by the German CLL study group (GCLLSG). Haematologica 100(11):1451–1459

    Article  CAS  Google Scholar 

  14. Tam CS, O'Brien S, Plunkett W et al (2014) Long-term results of first salvage treatment in CLL patients treated initially with FCR (fludarabine, cyclophosphamide, rituximab). Blood 124(20):3059–3064

    Article  CAS  Google Scholar 

  15. Tsai CY, Ray AS, Tumas DB, Keating MJ, Reiser H, Plunkett W (2009) Targeting DNA repair in chronic lymphocytic leukemia cells with a novel acyclic nucleotide analogue, GS-9219. Clin Cancer Res 15(11):3760–3769

    Article  CAS  Google Scholar 

  16. Giles FJ, O'Brien SM, Santini V et al (1999) Sequential cis-platinum and fludarabine with or without arabinosyl cytosine in patients failing prior fludarabine therapy for chronic lymphocytic leukemia: a phase II study. Leuk Lymphoma 36(1–2):57–65

    Article  CAS  Google Scholar 

  17. Hallek M, Pflug N (2011) State of the art treatment of chronic lymphocytic leukaemia. Blood Rev 25(1):1–9

    Article  CAS  Google Scholar 

  18. Moufarij MA, Sampath D, Keating MJ, Plunkett W (2006) Fludarabine increases oxaliplatin cytotoxicity in normal and chronic lymphocytic leukemia lymphocytes by suppressing interstrand DNA crosslink removal. Blood 108(13):4187–4193

    Article  CAS  Google Scholar 

  19. Tsimberidou AM, Wierda WG, Plunkett W et al (2008) Phase I-II study of oxaliplatin, fludarabine, cytarabine, and rituximab combination therapy in patients with Richter's syndrome or fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol Off J Am Soc Clin Oncol 26(2):196–203

    Article  CAS  Google Scholar 

  20. Tsimberidou AM, Wierda WG, Wen S et al (2013) Phase I-II clinical trial of oxaliplatin, fludarabine, cytarabine, and rituximab therapy in aggressive relapsed/refractory chronic lymphocytic leukemia or Richter syndrome. Clin Lymphoma Myeloma Leuk 13(5):568–574

    Article  CAS  Google Scholar 

  21. Yamauchi T, Nowak BJ, Keating MJ, Plunkett W (2001) DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophosphamide is inhibited by fludarabine and clofarabine. Clin Cancer Res 7(11):3580–3589

    CAS  PubMed  Google Scholar 

  22. Byrd JC, Peterson B, Piro L et al (2003) A phase II study of cladribine treatment for fludarabine refractory B cell chronic lymphocytic leukemia: results from CALGB study 9211. Leukemia 17(2):323–327

    Article  CAS  Google Scholar 

  23. Keating MJ, O'Brien S, McLaughlin P et al (1996) Clinical experience with fludarabine in hemato-oncology. Hematol Cell Ther 38(Suppl 2):S83–S91

    CAS  PubMed  Google Scholar 

  24. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  CAS  Google Scholar 

  25. Bramson J, McQuillan A, Aubin R et al (1995) Nitrogen mustard drug resistant B-cell chronic lymphocytic leukemia as an in vivo model for crosslinking agent resistance. Mutat Res 336(3):269–278

    Article  CAS  Google Scholar 

  26. Ricci F, Tedeschi A, Morra E, Montillo M (2009) Fludarabine in the treatment of chronic lymphocytic leukemia: a review. Ther Clin Risk Manag 5:187–207

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev 19(17):1951–1967

    Article  CAS  Google Scholar 

  28. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA End joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506

    Article  CAS  Google Scholar 

  29. Shiloh Y, Ziv Y (2013) The ATM Protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210

    Article  CAS  Google Scholar 

  30. Palla VV, Karaolanis G, Katafigiotis I et al (2017) gamma-H2AX: Can it be established as a classical cancer prognostic factor? Tumour Biol 39(3):1010428317695931

    Article  Google Scholar 

  31. Bindra RS, Goglia AG, Jasin M, Powell SN (2013) Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells. Nucleic Acids Res 41(11):e115

    Article  CAS  Google Scholar 

Further Reading

Download references

Acknowledgments

We acknowledge the important contributions to these protocols by the Comet assay kit and system developed by Trevigen and to Drs. Bindra and Powell for the generation of DNA repair reporter cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Sampath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lai, TH., Sampath, D. (2019). Assays on DNA Damage and Repair in CLL. In: Malek, S. (eds) Chronic Lymphocytic Leukemia. Methods in Molecular Biology, vol 1881. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8876-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8876-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8875-4

  • Online ISBN: 978-1-4939-8876-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics