Skip to main content

Identification of Mutated Cancer Driver Genes in Unpaired RNA-Seq Samples

  • Protocol
  • First Online:
Cancer Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1878))

Abstract

The identification of cancer driver genes through the analysis of mutations detected with high-throughput sequencing is a useful tool and a key challenge in cancer genomics. The workflow presented here relies on unpaired RNA-seq tumoral samples, thus leveraging already available RNA-seq data and providing the intrinsical benefits of directly targeting the transcriptome. Based on well-established methods for variant detection, this workflow also involves thorough data cleaning and extensive annotation, which enable the selection for somatic mutations with functional impact and the prioritization of genes relevant to the carcinogenic processes in the input samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Picard Tools. https://broadinstitute.github.io/picard/

  3. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mills RE, Pittard WS, Mullaney JM, Farooq U, Creasy TH, Mahurkar AA, Kemeza DM, Strassler DS, Ponting CP, Webber C, Devine SE (2011) Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res 21:830–839. https://doi.org/10.1101/gr.115907.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics 26:2069–2070. https://doi.org/10.1093/bioinformatics/btq330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31:213–219. https://doi.org/10.1038/nbt.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576. https://doi.org/10.1101/gr.129684.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Radenbaugh AJ, Ma S, Ewing A, Stuart JM, Collisson EA, Zhu J, Haussler D (2014) RADIA: RNA and DNA integrated analysis for somatic mutation detection. PLoS One 9:e111516. https://doi.org/10.1371/journal.pone.0111516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  12. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.10.33

    Google Scholar 

  13. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178. https://doi.org/10.1093/nar/gkq622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, Rätsch G, Goldman N, Hubbard TJ, Harrow J, Guigó R, Bertone P (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 10:1185–1191. https://doi.org/10.1038/nmeth.2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Exome Aggregation Consortium (ExAC), Cambridge, MA. http://exac.broadinstitute.org/

  16. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39:D945–D950. https://doi.org/10.1093/nar/gkq929

    Article  CAS  PubMed  Google Scholar 

  17. Derrien T, Estellé J, Marco Sola S, Knowles DG, Raineri E, Guigó R, Ribeca P (2012) Fast computation and applications of genome mappability. PLoS One 7:e30377. https://doi.org/10.1371/journal.pone.0030377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Davila JI, Baheti S, Bhagwate AV, Wang X, Kocher J-PA, Slager SL, Feldman AL, Novak AJ, Cerhan JR, Thompson EA, Asmann YW (2014) RVboost: RNA-seq variants prioritization using a boosting method. Bioinformatics 3:1–3. https://doi.org/10.1093/bioinformatics/btu577

    Article  CAS  Google Scholar 

  19. Piskol R, Ramaswami G, Li JB (2013) Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 93:641–651. https://doi.org/10.1016/j.ajhg.2013.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cabanski CR, Wilkerson MD, Soloway M, Parker JS, Liu J, Prins JF, Marron JS, Perou CM, Neil Hayes D (2013) BlackOPs: increasing confidence in variant detection through mappability filtering. Nucleic Acids Res 41:1–10. https://doi.org/10.1093/nar/gkt692

    Article  CAS  Google Scholar 

  21. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664. https://doi.org/10.1101/gr.229202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Brien TD, Jia P, Xia J, Saxena U, Jin H, Vuong H, Kim P, Wang Q, Aryee MJ, Mino-Kenudson M, Engelman J, Le LP, Iafrate AJ, Heist RS, Pao W, Zhao Z (2015) Inconsistency and features of single nucleotide variants detected in whole exome sequencing versus transcriptome sequencing: a case study in lung cancer. Methods 83:118–127. https://doi.org/10.1016/j.ymeth.2015.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mosen-Ansorena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mosen-Ansorena, D. (2019). Identification of Mutated Cancer Driver Genes in Unpaired RNA-Seq Samples. In: Krasnitz, A. (eds) Cancer Bioinformatics. Methods in Molecular Biology, vol 1878. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8868-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8868-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8866-2

  • Online ISBN: 978-1-4939-8868-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics