Skip to main content

Methods and Tools in Genome-wide Association Studies

  • Protocol
  • First Online:
Computational Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1819))

Abstract

Many traits, such as height, the response to a given drug, or the susceptibility to certain diseases are presumably co-determined by genetics. Especially in the field of medicine, it is of major interest to identify genetic aberrations that alter an individual’s risk to develop a certain phenotypic trait. Addressing this question requires the availability of comprehensive, high-quality genetic datasets. The technological advancements and the decreasing cost of genotyping in the last decade led to an increase in such datasets. Parallel to and in line with this technological progress, an analysis framework under the name of genome-wide association studies was developed to properly collect and analyze these data. Genome-wide association studies aim at finding statistical dependencies—or associations—between a trait of interest and point-mutations in the DNA. The statistical models used to detect such associations are diverse, spanning the whole range from the frequentist to the Bayesian setting.

Since genetic datasets are inherently high-dimensional, the search for associations poses not only a statistical but also a computational challenge. As a result, a variety of toolboxes and software packages have been developed, each implementing different statistical methods while using various optimizations and mathematical techniques to enhance the computations.

This chapter is devoted to the discussion of widely used methods and tools in genome-wide association studies. We present the different statistical models and the assumptions on which they are based, explain peculiarities of the data that have to be accounted for and, most importantly, introduce commonly used tools and software packages for the different tasks in a genome-wide association study, complemented with examples for their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacDonald ME, Novelletto A, Lin C et al (1992) The Huntington’s disease candidate region exhibits many different haplotypes. Nat Genet 1:99–103

    Article  CAS  PubMed  Google Scholar 

  2. Kerem B-S (1989) Identification of the cystic fibrosis gene: genetic analysis. Trends Genet 5:363

    Article  Google Scholar 

  3. Bush WS, Moore JH (2012) Chapter 11: Genome-wide association studies. PLoS Comput Biol 8:e1002822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Visscher PM, Brown MA, McCarthy MI et al (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  CAS  Google Scholar 

  7. Gibbs RA, Belmont JW, Hardenbol P et al (2003) The international HapMap project. Nature 426:789–796

    Article  CAS  Google Scholar 

  8. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  9. Fan J-B, Chee MS, Gunderson KL (2006) Highly parallel genomic assays. Nat Rev Genet 7:632–644

    Article  CAS  PubMed  Google Scholar 

  10. Dudoit S, van der Laan MJ (2008) Multiple hypothesis testing. In: Multiple testing procedures with applications to genomics. Springer, New York, NY, pp 1–47

    Chapter  Google Scholar 

  11. Fairweather D, Frisancho-Kiss S, Rose NR (2008) Sex differences in autoimmune disease from a pathological perspective. Am J Pathol 173:600–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  13. Atwell S, Huang YS, Vilhjálmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alonso-Blanco C, Andrade J, Becker C et al (2016) 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491

    Google Scholar 

  15. Zhao K, Tung C-W, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed  CAS  Google Scholar 

  16. Mackay TFC, Richards S, Stone EA et al (2012) The Drosophila melanogaster genetic reference panel. Nature 482:173–178

    Google Scholar 

  17. Kirby A, Kang HM, Wade CM et al (2010) Fine mapping in 94 inbred mouse strains using a high-density haplotype resource. Genetics 185:1081–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Freilinger T, Anttila V, de Vries B et al (2012) Genome-wide assoiation analysis identifies susceptibility loci for migraine without aura. Nat Genet 44:777–782

    Google Scholar 

  19. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee SH, Wray NR, Goddard ME et al (2011) Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet 88:294–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pedroso I, Breen G (2011) Gene set analysis and network analysis for genome-wide association studies. Cold Spring Harb Protoc 2011:pdb.top065581

    Article  PubMed  Google Scholar 

  22. Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  CAS  PubMed  Google Scholar 

  23. Kam-Thong T, Czamara D, Tsuda K et al (2011) EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. Eur J Hum Genet 19:465–471

    Article  CAS  PubMed  Google Scholar 

  24. Kam-Thong T, Azencott C-A, Cayton L et al (2012) GLIDE: GPU-based linear regression for detection of epistasis. Hum Hered 73:220–236

    Article  PubMed  Google Scholar 

  25. Liu JZ, Mcrae AF, Nyholt DR et al (2010) A versatile gene-based test for genome-wide association studies. Am J Hum Genet 87:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lamparter D, Marbach D, Rueedi R et al (2016) Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLoS Comput Biol 12:e1004714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jia P, Zheng S, Long J et al (2011) dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics (Oxford, England) 27:95–102

    Article  CAS  Google Scholar 

  28. Rossin EJ, Lage K, Raychaudhuri S et al (2011) Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 7:e1001273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Azencott C-A, Grimm D, Sugiyama M et al (2013) Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics 29:i171–i179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Q, Yu H, Zhao Z et al (2015) EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics (Oxford, England). 31:2591–2594

    Article  CAS  PubMed Central  Google Scholar 

  31. Llinares-López F, Grimm DG, Bodenham DA et al (2015) Genome-wide detection of intervals of genetic heterogeneity associated with complex traits. Bioinformatics 31:i240–i249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Buzdugan L, Kalisch M, Navarro A et al (2016) Assessing statistical significance in multivariable genome wide association analysis. Bioinformatics 32:1990–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsuzaki H, Dong S, Loi H et al (2004) Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Methods 1:109–111

    Article  CAS  PubMed  Google Scholar 

  34. Clarke GM, Anderson CA, Pettersson FH et al (2011) Basic statistical analysis in genetic case-control studies. Nat Protoc 6:121–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plomin R, Haworth CMA, Davis OSP (2009) Common disorders are quantitative traits. Nat Rev Genet 10:872–878

    Article  CAS  PubMed  Google Scholar 

  36. Power RA, Parkhill J, de Oliveira T (2017) Microbial genome-wide association studies: lessons from human GWAS. Nat Rev Genet 18:41–50

    Article  CAS  PubMed  Google Scholar 

  37. Wu MC, Lee S, Cai T et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188–193

    Article  PubMed  Google Scholar 

  39. Neale BM, Rivas MA, Voight BF et al (2011) Testing for an unusual distribution of rare variants. PLoS Genet 7:e1001322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson CA, Pettersson FH, Clarke GM et al (2010) Data quality control in genetic case-control association studies. Nat Protoc 5:1564–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511

    Article  CAS  PubMed  Google Scholar 

  42. Fisher RA (1925) Statistical methods for research workers. Genesis Publishing Pvt Ltd., Edinburgh

    Google Scholar 

  43. Pearson K (1900) X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos Mag Ser 5(50):157–175

    Article  Google Scholar 

  44. Fahrmeir L, Kneib T, Lang S et al (2013) Regression: models, methods and applications. Springer Science & Business Media, New York, NY

    Book  Google Scholar 

  45. Yang J, Zaitlen NA, Goddard ME et al (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Loh P-R, Tucker G, Bulik-Sullivan BK et al (2015) Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet 47:284–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  48. Yang J, Weedon MN, Purcell S et al (2011) Genomic inflation factors under polygenic inheritance. Eur J Hum Genet 19:807–812

    Article  PubMed  PubMed Central  Google Scholar 

  49. Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 60:155–166

    Article  CAS  PubMed  Google Scholar 

  50. Lippert C, Listgarten J, Liu Y et al (2011) FaST linear mixed models for genome-wide association studies. Nat Methods 8:833–835

    Article  CAS  PubMed  Google Scholar 

  51. Widmer C, Lippert C, Weissbrod O et al (2014) Further improvements to linear mixed models for genome-wide association studies. Sci Rep 4:6874

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kang HM, Zaitlen NA, Wade CM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Veyrieras J-B, Kudaravalli S, Kim SY et al (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 4:e1000214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mooney MA, Nigg JT, McWeeney SK et al (2014) Functional and genomic context in pathway analysis of GWAS data. Trends Genet 30:390–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sedeño-Cortés AE, Pavlidis P (2014) Pitfalls in the application of gene-set analysis to genetics studies. Trends Genet 30:513–514

    Article  PubMed  CAS  Google Scholar 

  57. Ballard DH, Cho J, Zhao H (2010) Comparisons of multi-marker association methods to detect association between a candidate region and disease. Genet Epidemiol 34:201–212

    Article  PubMed  PubMed Central  Google Scholar 

  58. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Listgarten J, Lippert C, Kang EY et al (2013) A powerful and efficient set test for genetic markers that handles confounders. Bioinformatics 29:1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zuk O, Hechter E, Sunyaev SR et al (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci 109:1193–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ueki M, Cordell HJ (2012) Improved statistics for genome-wide interaction analysis. PLoS Genet 8:e1002625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  CAS  PubMed  Google Scholar 

  63. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  PubMed  Google Scholar 

  64. Li T, Wernersson R, Hansen RB et al (2017) A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 14:61–64

    Article  CAS  PubMed  Google Scholar 

  65. Johnson RC, Nelson GW, Troyer JL et al (2010) Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics 11:724

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilita. Libreria internazionale Seeber, Firenze

    Google Scholar 

  67. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300

    Google Scholar 

  68. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  69. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci 100:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thompson JR, Attia J, Minelli C (2011) The meta-analysis of genome-wide association studies. Brief Bioinform 12:259–269

    Article  PubMed  Google Scholar 

  71. Evangelou E, Ioannidis JPA (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389

    Article  CAS  PubMed  Google Scholar 

  72. Stouffer SA, Suchman EA, DeVinney LC et al (1949) The American soldier: adjustment during army life. In: Studies in social psychology in World War II, vol 1. Princeton University Press, Princeton, NJ

    Google Scholar 

  73. Borenstein M, Hedges LV, Higgins JPT et al (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Syn Methods 1:97–111

    Article  Google Scholar 

  74. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    Article  CAS  PubMed  Google Scholar 

  75. Yang J, Lee SH, Goddard ME et al (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kang HM, Sul JH, S.K. Service et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Svishcheva GR, Axenovich TI, Belonogova NM et al (2012) Rapid variance components-based method for whole-genome association analysis. Nat Genet 44:1166–1170

    Article  CAS  PubMed  Google Scholar 

  78. de Leeuw CA, Mooij JM, Heskes T et al (2015) MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11:e1004219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Childs LH, Lisec J, Walther D (2012) Matapax: an online high-throughput genome-wide association study pipeline. Plant Physiol 158:1534–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seren Ü, Vilhjálmsson BJ, Horton MW et al (2012) GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell 24:4793–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grimm DG, Roqueiro D, Salome P et al (2017) easyGWAS: a cloud-based platform for comparing the results of genome-wide association studies. Plant Cell 29:5

    Article  CAS  PubMed  Google Scholar 

  82. Galinsky KJ, Bhatia G, Loh P-R et al (2016) Fast principal-component analysis reveals convergent evolution of ADH1B in Europe and East Asia. Am J Hum Genet 98:456–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cormen TH, Leiserson CE, Rivest RL et al (2009) Introduction to algorithms. MIT Press, Cambridge, MA

    Google Scholar 

  84. Llinares-López, Papaxanthos L, Bodenham D, Roqueiro D (2017) COPDGene Investigators, Karsten Borgwardt; Genome-wide genetic heterogeneity discovery with categorical covariates. Bioinformatics 33(2): 1820--1828

    Article  PubMed  PubMed Central  Google Scholar 

  85. Papaxanthos L, Llinares-Lopez F, Bodenham D et al (2016) Finding significant combinations of features in the presence of categorical covariates. In: Lee DD, Sugiyama M, Luxburg UV et al (eds) Advances in neural information processing systems, vol 29. Curran Associates, Inc, Red Hook, NY, pp 2271–2279

    Google Scholar 

  86. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  Google Scholar 

  87. Seren Ü, Grimm D, Fitz J et al (2017) AraPheno: a public database for Arabidopsis thaliana phenotypes. Nucleic Acids Res 45:D1054–D1059

    Google Scholar 

  88. McGaughran A, Rödelsperger C, Grimm DG et al (2016) Genomic profiles of diversification and genotype-phenotype association in Island nematode lineages. Mol Biol Evol 33:2257–2272

    Article  CAS  PubMed  Google Scholar 

  89. Easton DF, Eeles RA (2008) Genome-wide association studies in cancer. Hum Mol Genet 17:R109–R115

    Article  CAS  PubMed  Google Scholar 

  90. Kraft P, Hunter DJ (2009) Genetic risk prediction--are we there yet? N Engl J Med 360:1701–1703

    Article  CAS  PubMed  Google Scholar 

  91. Couzin J (2008) DNA test for breast cancer risk draws criticism. Science 322:357–357

    Article  CAS  PubMed  Google Scholar 

  92. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  CAS  PubMed Central  Google Scholar 

  93. Fuchsberger C, Flannick J, Teslovich TM et al (2016) The genetic architecture of type 2 diabetes. Nature 536:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  CAS  PubMed  Google Scholar 

  95. T. Burdett, P.N. Hall, E. Hastings, et al. The NHGRI-EBI catalog of published genome-wide association studies. www.ebi.ac.uk/gwas.

  96. Gusev A, Bhatia G, Zaitlen N et al (2013) Quantifying missing heritability at known GWAS loci. PLoS Genet 9:e1003993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bergen SE, Petryshen TL (2012) Genome-wide association studies (GWAS) of schizophrenia: does bigger lead to better results? Curr Opin Psychiatry 25:76–82

    Article  PubMed  PubMed Central  Google Scholar 

  98. O’Donovan MC, Craddock N, Norton N et al (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40:1053–1055

    Article  PubMed  CAS  Google Scholar 

  99. Williams HJ, Norton N, Dwyer S et al (2011) Fine mapping of ZNF804A and genome wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 16:429–441

    Article  CAS  PubMed  Google Scholar 

  100. Richardson WC, Berwick DM, Bisgard J et al (2001) Crossing the quality chasm: a new health system for the 21st century. Institute of Medicine, National Academy Press, Washington, DC

    Google Scholar 

  101. Manolio TA (2013) Bringing genome-wide association findings into clinical use. Nat Rev Genet 14:549–558

    Article  CAS  PubMed  Google Scholar 

  102. Lencz T, Malhotra AK (2015) Targeting the schizophrenia genome: a fast track strategy from GWAS to clinic. Mol Psychiatry 20:820–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chan SL, Jin S, Loh M et al (2015) Progress in understanding the genomic basis for adverse drug reactions: a comprehensive review and focus on the role of ethnicity. Pharmacogenomics 16:1161–1178

    Article  CAS  PubMed  Google Scholar 

  104. Huang W, Massouras A, Inoue Y et al (2014) Natural variation in genome architecture among 205 Drosophila melanogaster genetic reference panel lines. Genome Res 24:1193–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Andersen EC, Gerke JP, Shapiro JA et al (2012) Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 44:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Farber CR, Bennett BJ, Orozco L et al (2011) Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 7:e1002038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hayward JJ, Castelhano MG, Oliveira KC et al (2016) Complex disease and phenotype mapping in the domestic dog. Nat Commun 7:10460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tang R, Noh HJ, Wang D et al (2014) Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biol 15:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Flint J, Eskin E (2012) Genome-wide association studies in mice. Nat Rev Genet 13:807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li H, Peng Z, Yang X et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50

    Article  CAS  PubMed  Google Scholar 

  111. Lin T, Zhu G, Zhang J et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    Article  CAS  PubMed  Google Scholar 

  112. Nicolas SD, Péros J-P, Lacombe T et al (2016) Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol 16:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  114. Sharma A, Lee JS, Dang CG et al (2015) Stories and challenges of genome wide association studies in livestock — a review. Asian Australas J Anim Sci 28: 1371–1379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Llinares-López F, Sugiyama M, Papaxanthos L et al (2015) Fast and memory-efficient significant pattern mining via permutation testing. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Sydney, NSW, pp 725–734

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anja C. Gumpinger or Karsten M. Borgwardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gumpinger, A.C., Roqueiro, D., Grimm, D.G., Borgwardt, K.M. (2018). Methods and Tools in Genome-wide Association Studies. In: von Stechow, L., Santos Delgado, A. (eds) Computational Cell Biology. Methods in Molecular Biology, vol 1819. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8618-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8618-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8617-0

  • Online ISBN: 978-1-4939-8618-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics