Skip to main content

A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

Abstract

The DNA origami method exploits the self-assembly property of nucleic acids to build diverse nanoscale systems. The all-atom molecular dynamics (MD) method has emerged as a powerful computational tool for atomic-resolution characterization of the in situ structure and physical properties of DNA origami objects. This chapter provides step-by-step instructions for building atomic-scale models of DNA origami systems, using the MD method to simulate the models, and performing basic analyses of the resulting MD trajectories.

The original version of this chapter was revised. The correction to this chapter is available at https://doi.org/10.1007/978-1-4939-8582-1_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 06 November 2018

    Correction to: Chapter 15 in: Giampaolo Zuccheri (ed.), DNA Nanotechnology: Methods and Protocols, Methods in Molecular Biology, vol. 1811, https://doi.org/10.1007/978-1-4939-8582-1_15

References

  1. Seeman NC (2007) An overview of structural DNA nanotechnology. Mol Biotechnol 37:246–257. https://doi.org/10.1007/s12033-007-0059-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772. https://doi.org/10.1038/nnano.2011.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  4. Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418. https://doi.org/10.1038/nature08016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730. https://doi.org/10.1126/science.1174251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han D, Pal S, Nangreave J et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346. https://doi.org/10.1126/science.1202998

    Article  CAS  PubMed  Google Scholar 

  7. Zadegan RM, Jepsen MDE, Thomsen KE et al (2012) Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano 6:10050–10053. https://doi.org/10.1021/nn303767b

    Article  CAS  PubMed  Google Scholar 

  8. Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76. https://doi.org/10.1038/nature07971

    Article  CAS  PubMed  Google Scholar 

  9. Liedl T, Högberg B, Tytell J et al (2010) Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol 5:520–524. https://doi.org/10.1038/nnano.2010.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Langecker M, Arnaut V, Martin TG et al (2012) Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338:932–936. https://doi.org/10.1126/science.1225624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu S, Su W, Li Z, Ding X (2015) Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Biosens Bioelectron 71:57–61. https://doi.org/10.1016/j.bios.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  12. Nickels PC, Wünsch B, Holzmeister P et al (2016) Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354:305–307. https://doi.org/10.1126/science.aah5974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmied JJ, Forthmann C, Pibiri E, Lalkens B (2013) Supporting information for DNA origami nanopillars as standards for three- dimensional superresolution microscopy. Nano Lett 13:781–785. https://doi.org/10.1021/nl304492y

    Article  CAS  PubMed  Google Scholar 

  14. Thacker VV, Herrmann LO, Sigle DO et al (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 13(5):3448. https://doi.org/10.1038/ncomms4448

    Article  CAS  Google Scholar 

  15. Kuzyk A, Yang Y, Duan X et al (2016) A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat Commun 7:10591. https://doi.org/10.1038/ncomms10591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Linko V, Eerikäinen M, Kostiainen MA (2015) A modular DNA origami-based enzyme cascade nanoreactor. Chem Commun 51:5351–5354. https://doi.org/10.1039/C4CC08472A

    Article  CAS  Google Scholar 

  17. Liu M, Fu J, Hejesen C et al (2013) A DNA tweezer-actuated enzyme nanoreactor. Nat Commun 4:2127. https://doi.org/10.1038/ncomms3127

    Article  CAS  PubMed  Google Scholar 

  18. Williams S, Lund K, Lin C et al (2009) Tiamat: a three-dimensional editing tool for complex DNA structures. In: Goel A, Simmel FC, Sos’ik P (eds) DNA 2008: DNA Computing, pp 90–101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03076-5_8

    Chapter  Google Scholar 

  19. Douglas SM, Marblestone AH, Teerapittayanon S et al (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006. https://doi.org/10.1093/nar/gkp436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai X-c, Martin TG, Scheres SHW, Dietz H (2012) Cryo-EM structure of a 3D DNA-origami object. Proc Natl Acad Sci U S A 109:20012–20017. https://doi.org/10.1073/pnas.1215713109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim DN, Kilchherr F, Dietz H, Bathe M (2012) Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res 40:2862–2868. https://doi.org/10.1093/nar/gkr1173

    Article  CAS  PubMed  Google Scholar 

  22. Pan K, Kim D-N, Zhang F et al (2014) Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat Commun 5:5578. https://doi.org/10.1038/ncomms6578

    Article  CAS  PubMed  Google Scholar 

  23. Sedeh RS, Pan K, Adendorff MR et al (2016) Computing nonequilibrium conformational dynamics of structured nucleic acid assemblies. J Chem Theory Comput 12:261–273. https://doi.org/10.1021/acs.jctc.5b00965

    Article  CAS  PubMed  Google Scholar 

  24. Doye JPK, Ouldridge TE, Louis AA et al (2013) Coarse-graining DNA for simulations of DNA nanotechnology. Phys Chem Chem Phys 15:20395. https://doi.org/10.1039/c3cp53545b

    Article  CAS  PubMed  Google Scholar 

  25. Snodin BEK, Romano F, Rovigatti L et al (2016) Direct simulation of the self-assembly of a small DNA origami. ACS Nano 10:1724–1737. https://doi.org/10.1021/acsnano.5b05865

    Article  CAS  PubMed  Google Scholar 

  26. Yoo J, Aksimentiev A (2013) In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc Natl Acad Sci U S A 110:20099–20104. https://doi.org/10.1073/pnas.1316521110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li C-Y, Hemmig EA, Kong J et al (2015) Ionic conductivity, structural deformation, and programmable anisotropy of dna origami in electric field. ACS Nano 9:1420–1433. https://doi.org/10.1021/nn505825z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Slone SM, Li C-Y, Yoo J, Aksimentiev A (2016) Molecular mechanics of DNA bricks: in situ structure, mechanical properties and ionic conductivity. New J Phys 18:55012. https://doi.org/10.1088/1367-2630/18/5/055012

    Article  CAS  Google Scholar 

  29. Göpfrich K, Li C-Y, Mames I et al (2016) Ion channels made from a single membrane-spanning dna duplex. Nano Lett 16:4665–4669. https://doi.org/10.1021/acs.nanolett.6b02039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Göpfrich K, Li CY, Ricci M et al (2016) Large-conductance transmembrane porin made from DNA origami. ACS Nano 10:8207–8214. https://doi.org/10.1021/acsnano.6b03759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maffeo C, Yoo J, Aksimentiev A (2016) De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation. Nucleic Acids Res 44:3013–3019. https://doi.org/10.1093/nar/gkw155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  34. VMD user guide. http://www.ks.uiuc.edu/Research/vmd/current/ug/ug.html

  35. VMD tutorial. http://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorialhtml/index.html

  36. NAMD user guide. http://www.ks.uiuc.edu/Research/namd/current/ug/

  37. NAMD tutorial. http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/index.html

  38. Yoo J, Aksimentiev A (2012) Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J Phys Chem Lett 3:45–50. https://doi.org/10.1021/jz201501a

    Article  CAS  Google Scholar 

  39. Yoo J, Aksimentiev A (2012) Competitive binding of cations to duplex DNA revealed through molecular dynamics simulations. J Phys Chem B 116:12946–12954. https://doi.org/10.1021/jp306598y

    Article  CAS  PubMed  Google Scholar 

  40. Yoo J, Aksimentiev A (2016) The structure and intermolecular forces of DNA condensates. Nucleic Acids Res 44:2036–2046. https://doi.org/10.1093/nar/gkw081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoo J, Aksimentiev A (2015) Molecular dynamics of membrane-spanning DNA channels: conductance mechanism, electro-osmotic transport, and mechanical gating. J Phys Chem Lett 6:4680–4687. https://doi.org/10.1021/acs.jpclett.5b01964

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Funding for the creation of this tutorial was provided by the NSF via Grant Award Number DMR-1507985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei Aksimentiev .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

Caption (106,183 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yoo, J., Li, CY., Slone, S.M., Maffeo, C., Aksimentiev, A. (2018). A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics