Skip to main content

Introduction of Genetic Material in Ralstonia solanacearum Through Natural Transformation and Conjugation

  • Protocol
  • First Online:
Host-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1734))

Abstract

Ralstonia solanacearum is a soil-borne plant pathogen, responsible of the bacterial wilt disease. Its unusual wide host range (more than 250 plant species), aggressiveness, and broad geographic distribution have made of this bacterium the main plant pathogenic model in the beta-Proteobacteria class. Many R. solanacearum strains have the ability to internalize exogenous DNA through natural transformation. This property is widely used in reverse genetics studies to create mutants or reporter gene constructs, in the aim to study the molecular bases of pathogenesis of this bacterium. In this chapter, we describe three in vitro methods (natural transformation, electrotransformation, and conjugation) commonly used to produce recombinant R. solanacearum cells after introduction of exogenous DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prior P, Ailloud F, Dalsing BL et al (2016) Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 17:90

    Article  PubMed  PubMed Central  Google Scholar 

  2. Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89

    Article  CAS  PubMed  Google Scholar 

  3. Coupat B, Chaumeille-Dole F, Fall S et al (2008) Natural transformation in the Ralstonia solanacearum species complex: number and size of DNA that can be transferred. FEMS Microbiol Ecol 66:14–24

    Article  CAS  PubMed  Google Scholar 

  4. Le T, D Leccas D, Boucher C (1978) Transformation of Pseudomonas solanacearum strain K60. In: proceedings of the 4th international conference on plant pathogenic bacteria. Angers (INRA ed). pp 819–822

    Google Scholar 

  5. Liu H, Zhang S, M a S, Denny TP (2005) Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol Plant-Microbe Interact 18:1296–1305

    Article  CAS  PubMed  Google Scholar 

  6. Cunnac S, Occhialini A, Barberis P et al (2004) Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol Microbiol 53:115–128

    Article  CAS  PubMed  Google Scholar 

  7. Monteiro F, Solé M, van Dijk I, Valls M (2012) A chromosomal insertion toolbox for promoter probing, mutant complementation, and pathogenicity studies in Ralstonia solanacearum. Mol Plant-Microbe Interact 25:557–568

    Article  CAS  PubMed  Google Scholar 

  8. Kang Y, Liu H, Genin S et al (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437

    Article  CAS  PubMed  Google Scholar 

  9. Barman A, Buragohain C, Ray SK (2017) Disruption of comA homolog in Ralstonia solanacearum does not impair its twitching motility. J Basic Microbiol 57:218–227

    Article  CAS  PubMed  Google Scholar 

  10. Bertolla F, Van Gijsegem F, Nesme X, Simonet P (1997) Conditions for natural transformation of Ralstonia solanacearum. Appl Environ Microbiol 63:4965–4968

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guidot A, Coupat B, Fall S et al (2009) Horizontal gene transfer between Ralstonia solanacearum strains detected by comparative genomic hybridization on microarrays. ISME J 3:549–562

    Article  CAS  PubMed  Google Scholar 

  12. González A, Plener L, Restrepo S et al (2011) Detection and functional characterization of a large genomic deletion resulting in decreased pathogenicity in Ralstonia solanacearum race 3 biovar 2 strains. Environ Microbiol 13:3172–3185

    Article  PubMed  Google Scholar 

  13. Schäfer A, Tauch A, Jäger W et al (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  14. Boucher CA, Barberis PA, Trigalet AP, Demery DA (1985) Transposon mutagenesis of pseudomonas solanacearum : isolation of Tn5- induced avirulent mutants. J Gen Microbiol 131:2449–2457

    CAS  Google Scholar 

  15. Friedman AM, Long SR, Brown SE et al (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296

    Article  CAS  PubMed  Google Scholar 

  16. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Marchetti M, Capela D, Glew M et al (2010) Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol 8:e1000280

    Article  PubMed  PubMed Central  Google Scholar 

  18. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Genin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perrier, A., Barberis, P., Genin, S. (2018). Introduction of Genetic Material in Ralstonia solanacearum Through Natural Transformation and Conjugation. In: Medina, C., López-Baena, F. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 1734. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7604-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7604-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7603-4

  • Online ISBN: 978-1-4939-7604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics