Skip to main content

RNA Immunoprecipitation Protocol to Identify Protein–RNA Interactions in Arabidopsis thaliana

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

The role of RNA-binding proteins in the regulation of epigenetic processes has received increasing attention in the past decades. In particular noncoding RNAs have been shown to play a role in chromatin loop formation, recruitment of chromatin modifiers and RNA-dependent DNA methylation. In plants, the identification of specific RNA–protein interactions is now rising, facilitated by the development of specific approaches for plant tissues. Here, we present a simple one-day RNA immunoprecipitation (RIP) protocol adapted for Arabidopsis, suited for the identification of RNAs that are associated with a protein-of-interest in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Re A, Kulberkyte E, Joshi T, Workman CT (2015) RNA – protein Interactions : an overview RNA-protein interactions. Methods Mol Biol 1097:491–521

    Article  Google Scholar 

  2. Au PCK, Helliwell C, Wang MB (2014) Characterizing RNA-protein interaction using cross-linking and metabolite supplemented nuclear RNA-immunoprecipitation. Mol Biol Rep 41:2971–2977

    Article  CAS  PubMed  Google Scholar 

  3. Wu L, Murat P, Matak-Vinkovic D, Murrell A, Balasubramanian S (2013) The binding interaction between long non-coding RNA HOTAIR and PRC2 proteins. Biochemistry 52:9519–9527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meredith EK, Balas MM, Sindy K, Haislop K, Johnson AM (2016) An RNA matchmaker protein regulates the activity of the long noncoding RNA HOTAIR. RNA 22:995–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kahlil AM, Guttman M, Huarte M, Garber M, Raj A, Morales DR, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672

    Article  Google Scholar 

  6. Názer E, Lei EP (2014) Modulation of chromatin modifying complexes by noncoding RNAs in trans. Curr Opin Genet Dev 25:68–73

    Article  PubMed  Google Scholar 

  7. Crevillén P, Sonmez C, Wu Z, Dean C (2013) A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 32:140–148

    Article  PubMed  Google Scholar 

  8. Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, Crespi M (2014) Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 55:383–396

    Article  CAS  PubMed  Google Scholar 

  9. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Mourik H, Muino JM, Pajoro A, Angenent GC, Kaufmann K (2010) Characterization on in vivo DNA-binding events of plant transcription factors by ChIP-seq: experimental protocol and computational analysis. Plant Funct Genomics 380:93–121

    Google Scholar 

  11. Huppertz I, Attig J, D’Ambrogio A, Easton LE, Sibley CR, Sugimoto Y, Tajnik M, Konig J, Ule J (2014) iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65:274–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jensen KB, Darnell RB (2008) CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol 488:85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Terzi LC, Simpson GG (2009) Arabidopsis RNA immunoprecipitation. Plant J 59:163–168

    Article  CAS  PubMed  Google Scholar 

  14. Berry S, Hartley M, Olsson TSG, Dean C, Howard M (2015) Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. elife 4:e07205

    Article  PubMed Central  Google Scholar 

  15. Moore MJ, Zhang C, Gantman EC, Mele A, Darnell JC, Darnell RB (2016) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat protoc 9:263–294

    Article  Google Scholar 

  16. Xing D, Wang Y, Hamilton M, Ben-Hur A, Reddy ASN (2015) Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell 27:3294–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  18. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, Chen D, Zhang X, Zhang Y, Liu C, Cao X (2015) Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Res 25:864–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mermaz, B., Liu, F., Song, J. (2018). RNA Immunoprecipitation Protocol to Identify Protein–RNA Interactions in Arabidopsis thaliana . In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics