Skip to main content

Measuring Mitochondrial Shape with ImageJ

  • Protocol
  • First Online:
Techniques to Investigate Mitochondrial Function in Neurons

Part of the book series: Neuromethods ((NM,volume 123))

Abstract

Mitochondria are shaped by opposing fission (division) and fusion events. Mounting evidence indicates that mitochondrial shape influences numerous aspects of mitochondrial function, including ATP production, Ca2+ buffering, and quality control. Despite the recognized importance of mitochondrial dynamics, the literature is rife with subjective, categorical estimates of mitochondrial morphology, preventing reliable comparison of results between groups. This chapter describes stringent, but easily implemented methods for quantification of mitochondrial shape changes using the open-source software package ImageJ. While we provide examples for analysis of epifluorescence images of cultured primary neurons, these methods are easily generalized to other cell types and imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492(1):50–65. doi:10.1002/cne.20682

    Article  PubMed  Google Scholar 

  2. De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem. doi:10.1146/annurev-biochem-060614-034216

    PubMed  Google Scholar 

  3. Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnaune-Pelloquin L, Davezac N, Mils V, Miquel MC, Rojo M, Belenguer P (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 90:3–19. doi:10.1016/j.nbd.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  4. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215

    Article  CAS  PubMed  Google Scholar 

  5. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36(5):449–451

    Article  PubMed  Google Scholar 

  6. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356(17):1736–1741

    Article  CAS  PubMed  Google Scholar 

  7. Sheffer R, Douiev L, Edvardson S, Shaag A, Tamimi K, Soiferman D, Meiner V, Saada A (2016) Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am J Med Genet A. doi:10.1002/ajmg.a.37624

    PubMed  Google Scholar 

  8. Koch J, Feichtinger RG, Freisinger P, Pies M, Schrodl F, Iuso A, Sperl W, Mayr JA, Prokisch H, Haack TB (2016) Disturbed mitochondrial and peroxisomal dynamics due to loss of MFF causes Leigh-like encephalopathy, optic atrophy and peripheral neuropathy. J Med Genet 53(4):270–278. doi:10.1136/jmedgenet-2015-103500

    Article  PubMed  Google Scholar 

  9. Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49(4):234–241. doi:10.1136/jmedgenet-2012-100836

    Article  PubMed  Google Scholar 

  10. Fahrner JA, Liu R, Perry MS, Klein J, Chan DC (2016) A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am J Med Genet A. doi:10.1002/ajmg.a.37721

    PubMed  Google Scholar 

  11. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  12. Lim IA, Merrill MA, Chen Y, Hell JW (2003) Disruption of the NMDA receptor-PSD-95 interaction in hippocampal neurons with no obvious physiological short-term effect. Neuropharmacology 45(6):738–754

    Article  CAS  PubMed  Google Scholar 

  13. Sternberger SR (1983) Biomedical image processing. IEEE Comput 18:22–34

    Article  Google Scholar 

  14. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp SL (eds) Medical image computing and computer-assisted intervention, Lecture notes in computer sciences, vol 1496. Springer, Berlin, pp 130–137

    Google Scholar 

  15. Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is currently supported by NIH grants NS056244 and NS087908 to S.S. We thank past and present members of the laboratory for providing critical feedback for development of the methods described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Strack .

Editor information

Editors and Affiliations

Appendix—Morphometry Macro

Appendix—Morphometry Macro

var ch = 0; // channel to be analyzed for RGB images/** Measure mitochondrial morphology in the current selection* Ctrl+Shift+O closes current and opens next image*/macro “Morphometry [F7]” {title = getTitle();morphometry(title, false); // not batch mode}/** Batch-apply a set of “named” ROIs to analyze images with that file name*/macro “Batch Morphometry [F8]” {dir = getDirectory(“Select an image directory”);while (roiManager(“Count”) == 0)waitForUser(“Please open named ROIs into ROI manager”);prevName = imgName = “”;n = roiManager(“Count”);for (i = 0; i < n; ++i) { // loop through the ROI Manager tableprevName = imgName;imgName = call(“ij.plugin.frame.RoiManager.getName”, i);if (isOpen(imgName)) { // named image is openselectWindow(imgName);} else { // done with current image, close and open nextif (isOpen(prevName)) {selectWindow(prevName);close();}open(dir + imgName);}roiManager(“Select”, i);morphometry(imgName, true); // batch mode}}function morphometry(title, batchMode) {while (ch < 1 || ch > 3) { /* RGB channel not yet selected, initialize; reinstall macro to change channel */ch = getNumber(“Analyze RGB channel(1-3):”, 1);run(“Set Measurements...”, “decimal=5 area perimeter fit”);print(“image\t n\t area2\t area-weighted ff\t form factor\t aspect ratio\t length”); /* header for results table */}if (bitDepth == 24) // RGB imagerun(“Make Composite”);if (isOpen(“Binary”)) {selectWindow(“Binary”);close();} // close previous working imageif (isOpen(“Skeleton”)) {selectWindow(“Skeleton”);close();} // close previous working imageselectWindow(title);if (selectionType() == -1) // no selectionrun(“Select All”);if (!batchMode) {roiManager(“Add”); // save selection to ROI Manager for batch processinglast = roiManager(“Count”) - 1;roiManager(“Select”, last);roiManager(“Rename”, title);/* roiManager(“Save”, File.directory + “named_ROIs.zip”); */ /* un-comment to save ROIs automatically */}// copy selection to new window and clear outsidesetSlice(ch); // ignored if grayscalerun(“Duplicate...”, “title=Binary”);run(“Make Inverse”);if (selectionType != -1) { // outside of ROI is selectedrun(“Duplicate...”, “ “); // make a mask of the backgroundrun(“Convert to Mask”);run(“Create Selection”);run(“Make Inverse”);roiManager(“Add”);close();n = roiManager(“Count”);roiManager(“Select”, n - 1);getRawStatistics(_area, backG); // mean is backgroundsetColor(backG);run(“Restore Selection”); // fill outside of selection with backgroundfill();run(“Gaussian Blur...”, “radius=64”); // smooth abrupt background transitionroiManager(“Delete”); /* delete masking selection (ROI manager has cell selections) */}run(“Select None”);// subtract background and thresholdrun(“Subtract Background...”, “rolling=50”); /* non-destructive filter even if already applied */run(“Make Binary”);// also try other threshold methods included with Fiji, e.g.: run(“Auto Threshold”, “method=Li white”);// create Results table of metrics, one line/particlerun(“Analyze Particles...”, “size=9-Infinity circularity=0.00-1.00 show=Masks pixel clear”);awff = ff = ar = sum_a = a2 = len = 0;for (i = 0; i < nResults; i++) { // for every particle in tablea = getResult(“Area”, i);p = getResult(“Perim.”, i);ar += getResult(“Major”, i) / getResult(“Minor”, i); /* aspect ratio = length / width */sum_a += a;a2 += a * a; // area2 = a2 / (sum_a * sum_a)awff += b = (p * p) / (4 * 3.14159265358979); // awff = ff * (a / sum_area)ff += b / a; // ff = p^2 / (4 * pi * a)}nParticles = nResults;// skeletonize to get lengthselectWindow(“Mask of Binary”); /* created by Analyze Particles .., excludes noise (< 9 pixels) */rename(“Skeleton”);run(“Skeletonize”);run(“Analyze Particles...”, “size=0-Infinity show=Nothing pixel clear”);for (i = 0; i < nResults; i++)len += getResult(“Area”, i);// average and outputa2 /= sum_a * sum_a;awff /= sum_a;ff /= nParticles;ar /= nParticles;len /= nResults;print(title + “\t “ + nParticles + “\t “ + a2 + “\t “ + awff + “\t “ + ff + “\t “ + ar + “\t “ + len);selectWindow(title);

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Merrill, R.A., Flippo, K.H., Strack, S. (2017). Measuring Mitochondrial Shape with ImageJ. In: Strack, S., Usachev, Y. (eds) Techniques to Investigate Mitochondrial Function in Neurons. Neuromethods, vol 123. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6890-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6890-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6888-6

  • Online ISBN: 978-1-4939-6890-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics