Skip to main content

Optimization of Membrane Protein Production Using Titratable Strains of E. coli

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1586))

Abstract

The heterologous expression of membrane proteins driven by T7 RNA polymerase in E. coli is often limited by a mismatch between the transcriptional and translational rates resulting in saturation of the Sec translocon and non-insertion of the membrane protein. In order to optimize the levels of folded, functional inserted protein, it is important to correct this mismatch. In this protocol, we describe the use of titratable strains of E. coli where two small-molecule inducers are used in a bi-variate analysis to optimize the expression levels by fine tuning the transcriptional and translational rates of an eGFP-tagged membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner S, Baars L, Ytterberg AJ et al (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550

    Article  CAS  PubMed  Google Scholar 

  2. Bill RM, Henderson PJ, Iwata S et al (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340

    Article  CAS  PubMed  Google Scholar 

  3. Marreddy RK, Geertsma ER, Permentier HP et al (2010) Amino acid accumulation limits the overexpression of proteins in Lactococcus lactis. PLoS One 5:e10317

    Article  PubMed  PubMed Central  Google Scholar 

  4. Angov E, Hillier CJ, Kincaid RL et al (2008) Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS One 3:e2189

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arechaga I, Miroux B, Karrasch S et al (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett 482:215–219

    Article  CAS  PubMed  Google Scholar 

  6. Loll PJ (2003) Membrane protein structural biology: the high throughput challenge. J Struct Biol 142:144–153

    Article  CAS  PubMed  Google Scholar 

  7. Wagner S, Bader ML, Drew D et al (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371

    Article  CAS  PubMed  Google Scholar 

  8. Drew DE, von Heijne G, Nordlund P et al (2001) Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Lett 507:220–224

    Article  CAS  PubMed  Google Scholar 

  9. Sonoda Y, Newstead S, Hu NJ et al (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19:17–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee C, Kang HJ, Hjelm A et al (2014) MemStar: a one-shot Escherichia coli-based approach for high-level bacterial membrane protein production. FEBS Lett 588:3761–3769

    Article  CAS  PubMed  Google Scholar 

  11. Drew D, Lerch M, Kunji E et al (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3:303–313

    Article  CAS  PubMed  Google Scholar 

  12. Drew D, Slotboom DJ, Friso G et al (2005) A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Science: A Publication of the Protein Society 14:2011–2017

    Article  CAS  Google Scholar 

  13. Mus-Veteau I (2010) Heterologous expression of membrane proteins for structural analysis. Methods Mol Biol 601:1–16

    Article  CAS  PubMed  Google Scholar 

  14. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  15. Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44

    Article  CAS  PubMed  Google Scholar 

  16. Dubendorff JW, Studier FW (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219:45–59

    Article  CAS  PubMed  Google Scholar 

  17. Klepsch MM, Persson JO, de Gier JW (2011) Consequences of the overexpression of a eukaryotic membrane protein, the human KDEL receptor, in Escherichia coli. J Mol Biol 407:532–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  CAS  PubMed  Google Scholar 

  19. Wagner S, Klepsch MM, Schlegel S et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schlegel S, Lofblom J, Lee C et al (2012) Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21(DE3). J Mol Biol 423:648–659

    Article  CAS  PubMed  Google Scholar 

  21. Hjelm A, Schlegel S, Baumgarten T et al (2013) Optimizing E. coli-based membrane protein production using Lemo21(DE3) and GFP-fusions. Methods Mol Biol 1033:381–400

    Article  CAS  PubMed  Google Scholar 

  22. Morra R, Shankar J, Robinson CJ et al (2016) Dual transcriptional-translational cascade permits cellular level tuneable expression control. Nucleic Acids Res 44:e21

    Article  PubMed  Google Scholar 

  23. Chao YP, Chiang CJ, Hung WB (2002) Stringent regulation and high-level expression of heterologous genes in Escherichia coli using T7 system controllable by the araBAD promoter. Biotechnol Prog 18:394–400

    Article  CAS  PubMed  Google Scholar 

  24. Hartnett J, Gracyalny J, Slater MR (2006) The Single Step (KRX) Competent Cells: Efficient Cloning and High Protein Yields. Promega Notes vol. 96, Promega Corp

    Google Scholar 

  25. Bird LE, Rada H, Verma A et al (2015) Green fluorescent protein-based expression screening of membrane proteins in Escherichia coli. J Vis Exp 6:e52357

    Google Scholar 

  26. Guzman LM, Belin D, Carson MJ et al (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haldimann A, Daniels LL, Wanner BL (1998) Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol 180:1277–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  CAS  PubMed  Google Scholar 

  29. Egan SM, Schleif RF (1993) A regulatory cascade in the induction of rhaBAD. J Mol Biol 234:87–98

    Article  CAS  PubMed  Google Scholar 

  30. Giacalone MJ, Gentile AM, Lovitt BT et al (2006) Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 40:355–364

    Article  CAS  PubMed  Google Scholar 

  31. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen G, Yanofsky C (2003) Tandem transcription and translation regulatory sensing of uncharged tryptophan tRNA. Science 301:211–213

    Article  CAS  PubMed  Google Scholar 

  33. Grundy FJ, Henkin TM (1993) tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 74:475–482

    Article  CAS  PubMed  Google Scholar 

  34. Li GW, Oh E, Weissman JS (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484:538–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8:R239

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    Article  CAS  PubMed  Google Scholar 

  37. Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chembiochem: Eur J Chem Biol 4:1024–1032

    Article  CAS  Google Scholar 

  38. Link KH, Breaker RR (2009) Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther 16:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dixon N, Duncan JN, Geerlings T et al (2010) Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A 107:2830–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dixon N, Robinson CJ, Geerlings T et al (2012) Orthogonal riboswitches for tuneable coexpression in bacteria. Angewandte Chemie 51:3620–3624

    Article  CAS  PubMed  Google Scholar 

  41. Bird LE (2011) High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods 55:29–37

    Article  CAS  PubMed  Google Scholar 

  42. Bird LE, Rada H, Flanagan J et al (2014) Application of In-Fusion cloning for the parallel construction of E. coli expression vectors. Methods Mol Biol 1116:209–234

    Article  CAS  PubMed  Google Scholar 

  43. Waldo GS, Standish BM, Berendzen J et al (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17:691–695

    Article  CAS  PubMed  Google Scholar 

  44. Hsieh JM, Besserer GM, Madej MG et al (2010) Bridging the gap: a GFP-based strategy for overexpression and purification of membrane proteins with intra and extracellular C-termini. Protein Sci 19:868–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Oxford Protein Production Facility-UK is supported by the UK Medical Research Council (MR/K018779/1) and the Manchester Group are supported by the Biotechnology and Biology Research Council, ND holds a BBSRC David Phillips Fellowship [BB/K014773/1].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neil Dixon or Louise E. Bird .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Morra, R., Young, K., Casas-Mao, D., Dixon, N., Bird, L.E. (2017). Optimization of Membrane Protein Production Using Titratable Strains of E. coli . In: Burgess-Brown, N. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 1586. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6887-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6887-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6885-5

  • Online ISBN: 978-1-4939-6887-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics