Skip to main content

Array-Based Comparative Genomic Hybridization (aCGH)

  • Protocol
  • First Online:
Cancer Cytogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1541))

Abstract

Copy number variations (CNVs) in the genomes have been suggested to play important roles in human evolution, genetic diversity, and disease susceptibility. A number of assays have been developed for the detection of CNVs, including fluorescent in situ hybridization (FISH), array-based comparative genomic hybridization (aCGH), PCR-based assays, and next-generation sequencing (NGS). In this chapter, we describe a microarray method that has been used for the detection of genome-wide CNVs, loss of heterozygosity (LOH), and uniparental disomy (UPD) associated with constitutional and neoplastic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1092 human genomes. Nature 491:56–65

    Article  PubMed Central  Google Scholar 

  2. 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 256:68–74

    Google Scholar 

  3. Sudmant PH, Rausch T, Gardner EJ et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iafrate AJ, Feuk L, Rivera MN et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951

    Article  CAS  PubMed  Google Scholar 

  5. Sebat J, Lakshmi B, Troge J et al (2004) Large-scale copy number polymorphism in the human genome. Science 305:525–528

    Article  CAS  PubMed  Google Scholar 

  6. Freeman JL, Perry GH, Feuk L et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961

    Article  CAS  PubMed  Google Scholar 

  7. Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCarroll SA, Kuruvilla FG, Korn JM et al (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 40:1166–1174

    Article  CAS  PubMed  Google Scholar 

  9. Korn JM, Kuruvilla FG, McCarroll SA et al (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 40:1253–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conrad DF, Pinto D, Redon R et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712

    Article  CAS  PubMed  Google Scholar 

  11. McCarroll SA (2010) Copy number variation and human genome maps. Nat Genet 42:365–366

    Article  CAS  PubMed  Google Scholar 

  12. Park H, Kim JI, Ju YS et al (2010) Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat Genet 42:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gersen SL, Keagle MB (2013) The principle of clinical cytogenetics, 3rd edn. Springer Science + Business Media, New York

    Google Scholar 

  14. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  15. The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  PubMed Central  Google Scholar 

  16. The Cancer Genome Atlas Research Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  17. Yang L, Luquette LJ, Gehlenborg N et al (2013) Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153:919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  CAS  PubMed  Google Scholar 

  19. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  CAS  PubMed  Google Scholar 

  20. Roylance R (2001) Comparative genomic hybridization. Methods Mol Med 57:223–240

    CAS  PubMed  Google Scholar 

  21. Cai WW, Mao JH, Chow CW et al (2002) Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. Nat Biotechnol 20:393–396

    Article  CAS  PubMed  Google Scholar 

  22. Cowell JK, Matsui S, Wang YD et al (2004) Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme. Cancer Genet Cytogenet 151:36–51

    Article  CAS  PubMed  Google Scholar 

  23. Shaffer LG, Bejjani BA (2004) A cytogeneticist’s perspective on genomic microarrays. Hum Reprod Update 10:221–226

    Article  CAS  PubMed  Google Scholar 

  24. Tchinda J, Lee C (2006) Detecting copy number variation in the human genome using comparative genomic hybridization. BioTechniques 41:385–392

    Article  CAS  PubMed  Google Scholar 

  25. Carter NP (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 39:S16–S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hester SD, Reid L, Nowak N et al (2009) Comparison of comparative genomic hybridization technologies across microarray platforms. J Biomol Tech 20:135–151

    PubMed  PubMed Central  Google Scholar 

  27. Holcomb IN, Trask BJ (2011) Comparative genomic hybridization to detect variation in the copy number of large DNA segments. Cold Spring Harb Protoc 2011:1323–1333

    Article  PubMed  Google Scholar 

  28. Pinto D, Darvishi K, Shi X et al (2011) Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol 29:512–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. UserGuide: Cytoscan® Assay [PDF] (2011–2012) Santa Clara CA: Affymetrix Inc

    Google Scholar 

  30. Shaw-Smith C, Redon R, Rickman L et al (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rickman L, Fiegler H, Shaw-Smith C et al (2005) Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet 43:353–361

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pfeifer D, Pantic M, Skatulla I et al (2006) Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 109:1202–1210

    Article  PubMed  Google Scholar 

  33. Jacobs S, Thompson ER, Nannya Y et al (2007) Genome-wide, high-resolution detection of copy number, loss of heterozygosity, and genotypes from formalin-fixed, paraffin-embedded tumor tissue using microarrays. Cancer Res 67:2544–2551

    Article  CAS  PubMed  Google Scholar 

  34. Bowden W, Skorupski J, Kovanci E et al (2009) Detection of novel copy number variants in uterine leiomyomas using high-resolution SNP arrays. Mol Hum Reprod 15:563–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scott SA, Cohen N, Brandt T et al (2009) Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization. Genet Med 12:85–92

    Article  Google Scholar 

  36. Heim S, Mitelman F (eds) (2015) Cancer cytogenetics: chromosomal and molecular genetic abberations of tumor cells. Wiley-Blackwell, New York

    Google Scholar 

  37. Heim S, Mitelman F (2009) Cancer cytogenetics. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  38. Beroukhim R, Mermel CH, Porter D et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Conlin LK, Thiel BD, Bonnemann CG et al (2010) Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum Mol Genet 19:1263–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller DT, Adam MP, Aradhya S et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. FDA News Release (2014) FDA allows marketing for first of-its-kind post-natal test to help diagnose developmental delays and intellectual disabilities in children. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm382179.htm

    Google Scholar 

  42. Affymetrix UserGuide (2015) UserGuide: OncoScan® CNV FFPE Assay Kit [PDF]. Affymetrix Inc, Santa Clara, CA

    Google Scholar 

  43. Foster JM, Oumie A, Togneri FS et al (2015) Cross-laboratory validation of the OncoScan® FFPE Assay, a multiplex tool for whole genome tumour profiling. BMC Med Genomics 8:5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Charles Lee and other colleagues for their kind help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengsheng Zhang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhang, C., Cerveira, E., Romanovitch, M., Zhu, Q. (2017). Array-Based Comparative Genomic Hybridization (aCGH). In: Wan, T. (eds) Cancer Cytogenetics. Methods in Molecular Biology, vol 1541. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6703-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6703-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6701-8

  • Online ISBN: 978-1-4939-6703-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics