Skip to main content

The Nuclear Translocation of ERK

  • Protocol
  • First Online:
ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

The ERK1 and ERK2 (ERK1/2) cascade is a central signaling pathway activated by a wide variety of extracellular agents that transmit the messages of G Protein Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Being such a central pathway, the activity of the cascade is well regulated, including by dynamic changes of the subcellular localization of components of the ERK1/2 cascade. In resting cells, ERK1/2 are localized in the cytosol due to their interactions with different anchoring proteins. After stimulation, ERK1/2 are phosphorylated by MEK1/2 on their regulatory TEY motif, which permits their detachment from the anchoring proteins. This detachment exposes ERK1/2 to additional phosphorylation on two serine residues (SPS motif) within the nuclear translocation signal (NTS) of the kinases. This additional phosphorylation allows ERK1/2 to interact with importin7, which consequently promotes their translocation to the nucleus. More studies are still required in order to better understand the mechanism and consequence of the nuclear translocation of ERK1/2. In this chapter, we describe some of the techniques used to study nuclear translocation of ERK1/2 in mammalian cells. We briefly mention methods such as digitonin permeabilization and cellular fractionation, as well as overexpression of reporter constructs. More thoroughly, we describe immunofluorescence, immunoprecipitation, and proximity ligation assay (PLA) approaches that are routinely used in our laboratory. Hopefully, the increase of knowledge based on these methods will open more opportunities for the identification of new therapeutic targets for diseases where the ERK1/2 cascade is dysregulated, such as cancer, neurodegenerative diseases, and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Keshet Y, Seger R (2010) The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 661:3–38

    Article  CAS  PubMed  Google Scholar 

  2. Wortzel I, Seger R (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2:195–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peti W, Page R (2013) Molecular basis of MAP kinase regulation. Protein Sci 22:1698–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  CAS  PubMed  Google Scholar 

  5. Carlson SM, Chouinard CR, Labadorf A et al (2011) Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4:ra11

    Article  Google Scholar 

  6. Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226

    Article  CAS  PubMed  Google Scholar 

  7. Plotnikov A, Zehorai E, Procaccia S et al (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633

    Article  CAS  PubMed  Google Scholar 

  8. Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaaro H, Rubinfeld H, Hanoch T et al (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci U S A 94:3742–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukuda M, Gotoh I, Adachi M et al (1997) A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase kinase. J Biol Chem 272:32642–32648

    Article  CAS  PubMed  Google Scholar 

  11. Fukuda M, Gotoh Y, Nishida E (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J 16:1901–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubinfeld H, Hanoch T, Seger R (1999) Identification of a cytoplasmic-retention sequence in ERK2. J Biol Chem 274:30349–30352

    Article  CAS  PubMed  Google Scholar 

  13. Wolf I, Rubinfeld H, Yoon S et al (2001) Involvement of the activation loop of ERK in the detachment from cytosolic anchoring. J Biol Chem 276:24490–24497

    Article  CAS  PubMed  Google Scholar 

  14. Tanoue T, Adachi M, Moriguchi T et al (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2:110–116

    Article  CAS  PubMed  Google Scholar 

  15. Torii S, Kusakabe M, Yamamoto T et al (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33–44

    Article  CAS  PubMed  Google Scholar 

  16. Ahn S, Shenoy SK, Wei H et al (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279:35518–35525

    Article  CAS  PubMed  Google Scholar 

  17. Reszka AA, Bulinski JC, Krebs EG et al (1997) Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Mol Biol Cell 8:1219–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perlson E, Michaelevski I, Kowalsman N et al (2006) Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J Mol Biol 364:938–944

    Article  CAS  PubMed  Google Scholar 

  19. Chuderland D, Seger R (2005) Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol 29:57–74

    Article  CAS  PubMed  Google Scholar 

  20. Chuderland D, Marmor G, Shainskaya A et al (2008) Calcium-mediated interactions regulate the subcellular localization of extracellular signal-regulated kinases. J Biol Chem 283:11176–11188

    Article  CAS  PubMed  Google Scholar 

  21. Ding Q, Zhao L, Guo H et al (2010) The nucleocytoplasmic transport of viral proteins. Virol Sin 25:79–85

    Article  CAS  PubMed  Google Scholar 

  22. Floch AG, Palancade B, Doye V (2014) Fifty years of nuclear pores and nucleocytoplasmic transport studies: multiple tools revealing complex rules. Methods Cell Biol 122:1–40

    Article  CAS  PubMed  Google Scholar 

  23. Sorokin AV, Kim ER, Ovchinnikov LP (2007) Nucleocytoplasmic transport of proteins. Biochemistry (Mosc) 72:1439–1457

    Article  CAS  Google Scholar 

  24. Zehorai E, Yao Z, Plotnikov A et al (2010) The subcellular localization of MEK and ERK—a novel nuclear translocation signal (NTS) paves a way to the nucleus. Mol Cell Endocrinol 314:213–220

    Article  CAS  PubMed  Google Scholar 

  25. Ranganathan A, Yazicioglu MN, Cobb MH (2006) The nuclear localization of ERK2 occurs by mechanisms both independent of and dependent on energy. J Biol Chem 281:15645–15652

    Article  CAS  PubMed  Google Scholar 

  26. Wiegert JS, Bengtson CP, Bading H (2007) Diffusion and not active transport underlies and limits ERK1/2 synapse-to-nucleus signaling in hippocampal neurons. J Biol Chem 282:29621–29633

    Article  CAS  PubMed  Google Scholar 

  27. Whitehurst AW, Wilsbacher JL, You Y et al (2002) ERK2 enters the nucleus by a carrier-independent mechanism. Proc Natl Acad Sci U S A 99:7496–7501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chuderland D, Konson A, Seger R (2008) Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell 31:850–861

    Article  CAS  PubMed  Google Scholar 

  29. Plotnikov A, Flores K, Maik-Rachline G et al (2015) The nuclear translocation of ERK1/2 as an anticancer target. Nat Commun 6:6685

    Article  CAS  PubMed  Google Scholar 

  30. Lorenzen JA, Baker SE, Denhez F et al (2001) Nuclear import of activated D-ERK by DIM-7, an importin family member encoded by the gene moleskin. Development 128:1403–1414

    CAS  PubMed  Google Scholar 

  31. Zehorai E, Seger R (2014) Beta-like importins mediate the nuclear translocation of mitogen-activated protein kinases. Mol Cell Biol 34:259–270

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yao Z, Seger R (2004) The molecular mechanism of MAPK/ERK inactivation. Curr Genomics 5:385–393

    Article  CAS  Google Scholar 

  33. Rodriguez J, Crespo P (2011) Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci Signal 4:re3

    Article  PubMed  Google Scholar 

  34. Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111:807–816

    Article  CAS  PubMed  Google Scholar 

  35. Colbeau A, Nachbaur J, Vignais PM (1971) Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta 249:462–492

    Article  CAS  PubMed  Google Scholar 

  36. Jivan A, Ranganathan A, Cobb MH (2010) Reconstitution of the nuclear transport of the MAP kinase ERK2. Methods Mol Biol 661:273–285

    Article  CAS  PubMed  Google Scholar 

  37. Claude A (1946) Fractionation of mammalian liver cells by differential centrifugation; experimental procedures and results. J Exp Med 84:61–89

    Article  CAS  PubMed Central  Google Scholar 

  38. Claude A (1946) Fractionation of mammalian liver cells by differential centrifugation; problems, methods, and preparation of extract. J Exp Med 84:51–59

    Article  CAS  PubMed Central  Google Scholar 

  39. Hogeboom GH, Schneider WC, Pallade GE (1948) Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem 172:619–635

    CAS  PubMed  Google Scholar 

  40. Berthet J, De Duve C (1951) Tissue fractionation studies. I. The existence of a mitochondria-linked, enzymically inactive form of acid phosphatase in rat-liver tissue. Biochem J 50:174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Duve C, Pressman BC, Gianetto R et al (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–617

    Article  PubMed Central  Google Scholar 

  42. Blobel G, Potter VR (1966) Nuclei from rat liver: isolation method that combines purity with high yield. Science 154:1662–1665

    Article  CAS  PubMed  Google Scholar 

  43. Bronfman M, Loyola G, Koenig CS (1998) Isolation of intact organelles by differential centrifugation of digitonin-treated hepatocytes using a table Eppendorf centrifuge. Anal Biochem 255:252–256

    Article  CAS  PubMed  Google Scholar 

  44. Nabbi A, Riabowol K (2015) Isolation of nuclei. Cold Spring Harb Protoc 2015(8):731–734

    PubMed  Google Scholar 

  45. Tavare JM, Fletcher LM, Welsh GI (2001) Using green fluorescent protein to study intracellular signalling. J Endocrinol 170:297–306

    Article  CAS  PubMed  Google Scholar 

  46. Marchi M, Parra R, Costa M et al (2010) Localization and trafficking of fluorescently tagged ERK1 and ERK2. Methods Mol Biol 661:287–301

    Article  CAS  PubMed  Google Scholar 

  47. Vandame P, Spriet C, Riquet F (2013) Optimization of ERK activity biosensors for both ratiometric and lifetime FRET measurements. Sensors (Basel) 14:1140–1154

    Article  Google Scholar 

  48. Harvey CD, Ehrhardt AG, Cellurale C et al (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105:19264–19269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sato M, Kawai Y, Umezawa Y (2007) Genetically encoded fluorescent indicators to visualize protein phosphorylation by extracellular signal-regulated kinase in single living cells. Anal Chem 79:2570–2575

    Article  CAS  PubMed  Google Scholar 

  50. Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kedziora KM, Jalink K (2015) Fluorescence resonance energy transfer microscopy (FRET). Methods Mol Biol 1251:67–82

    Article  CAS  PubMed  Google Scholar 

  52. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58:719–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou X, Herbst-Robinson KJ, Zhang J (2012) Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. Methods Enzymol 504:317–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sparta B, Pargett M, Minguet M et al (2015) Receptor-level mechanisms are required for EGF-stimulated ERK activity pulses. J Biol Chem 290:24784–24792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soderberg O, Gullberg M, Jarvius M et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  Google Scholar 

  56. Jarvius M, Paulsson J, Weibrecht I et al (2007) In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteomics 6:1500–1509

    Article  CAS  PubMed  Google Scholar 

  57. Fredriksson S, Gullberg M, Jarvius J et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  CAS  PubMed  Google Scholar 

  58. Cooke MJ, Phillips SR, Shah DS et al (2008) Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins. Cytotechnology 56:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mehta MM, Munker R, Kranz B et al (1983) Immunofluorescence with monoclonal antibodies on poly-L-lysine coated slides: an alternative to conventional methods. Blut 47:237–242

    Article  CAS  PubMed  Google Scholar 

  60. Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol 66:198–200

    Article  CAS  PubMed  Google Scholar 

  61. Rainaldi G, Calcabrini A, Santini MT (1998) Positively charged polymer polylysine-induced cell adhesion molecule redistribution in K562 cells. J Mater Sci Mater Med 9:755–760

    Article  CAS  PubMed  Google Scholar 

  62. Scheffler JM, Schiefermeier N, Huber LA (2014) Mild fixation and permeabilization protocol for preserving structures of endosomes, focal adhesions, and actin filaments during immunofluorescence analysis. Methods Enzymol 535:93–102

    Article  CAS  PubMed  Google Scholar 

  63. Stadler C, Skogs M, Brismar H et al (2010) A single fixation protocol for proteome-wide immunofluorescence localization studies. J Proteomics 73:1067–1078

    Article  CAS  PubMed  Google Scholar 

  64. Krenik KD, Kephart GM, Offord KP et al (1989) Comparison of antifading agents used in immunofluorescence. J Immunol Methods 117:91–97

    Article  CAS  PubMed  Google Scholar 

  65. Johnson GD, Nogueira Araujo GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43:349–350

    Article  CAS  PubMed  Google Scholar 

  66. Schneider C, Newman RA, Sutherland DR et al (1982) A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem 257:10766–10769

    CAS  PubMed  Google Scholar 

  67. Sousa MM, Steen KW, Hagen L et al (2011) Antibody cross-linking and target elution protocols used for immunoprecipitation significantly modulate signal-to noise ratio in downstream 2D-PAGE analysis. Proteome Sci 9:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hernychova L, Nekulova M, Potesil D et al (2012) A combined immunoprecipitation and mass spectrometric approach to determine deltaNp63-interacting partners. Klin Onkol 25(Suppl 2):64–69

    Google Scholar 

  69. Moresco JJ, Carvalho PC, Yates JR 3rd (2010) Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. J Proteomics 73:2198–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Free RB, Hazelwood LA, Sibley DR (2009) Identifying novel protein-protein interactions using co-immunoprecipitation and mass spectroscopy. Curr Protoc Neurosci Chapter 5:Unit 5.28

    PubMed  Google Scholar 

  71. Bozzacco L, Yu H (2013) Identification and quantitation of MHC class II-bound peptides from mouse spleen dendritic cells by immunoprecipitation and mass spectrometry analysis. Methods Mol Biol 1061:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Tami Hanoch for her help with the preparation of this chapter. This work was supported by a grant from the ISF. R.S. is an incumbent of the Yale S. Lewine and Ella Miller Lewine professorial chair for cancer research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rony Seger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Berti, D.A., Seger, R. (2017). The Nuclear Translocation of ERK. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics