Skip to main content

Generation of Artificial N-end Rule Substrate Proteins In Vivo and In Vitro

  • Protocol
  • First Online:
Plant Proteostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1450))

Abstract

In order to determine the stability of a protein or protein fragment dependent on its N-terminal amino acid, and therefore relate its half-life to the N-end rule pathway of targeted protein degradation (NERD), non-Methionine (Met) amino acids need to be exposed at their amino terminal in most cases. Per definition, at this position, destabilizing residues are generally unlikely to occur without further posttranslational modification of immature (pre-)proproteins. Moreover, almost exclusively, stabilizing, or not per se destabilizing residues are N-terminally exposed upon Met excision by Met aminopeptidases. To date, there exist two prominent protocols to study the impact of destabilizing residues at the N-terminal of a given protein by selectively exposing the amino acid residue to be tested. Such proteins can be used to study NERD substrate candidates and analyze NERD enzymatic components. Namely, the well-established ubiquitin fusion technique (UFT) is used in vivo or in cell-free transcription/translation systems in vitro to produce a desired N‐terminal residue in a protein of interest, whereas the proteolytic cleavage of recombinant fusion proteins by tobacco etch virus (TEV) protease is used in vitro to purify proteins with distinct N-termini. Here, we discuss how to accomplish in vivo and in vitro expression and modification of NERD substrate proteins that may be used as stability tester or activity reporter proteins and to characterize potential NERD substrates.

The methods to generate artificial substrates via UFT or TEV cleavage are described here and can be used either in vivo in the context of stably transformed plants and cell culture expressing chimeric constructs or in vitro in cell-free systems such as rabbit reticulocyte lysate as well as after expression and purification of recombinant proteins from various hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Graciet E, Wellmer F (2010) The plant N-end rule pathway: structure and functions. Trends Plant Sci 15:447–453

    Article  CAS  PubMed  Google Scholar 

  2. Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 8:1298–1345

    Article  Google Scholar 

  3. Tasaki T, Sriram SM, Park KS, Kwon YT (2012) The N-end rule pathway. Annu Rev Biochem 81:261–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ (2014) The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol 24(10):603–611

    Article  CAS  PubMed  Google Scholar 

  5. Dougan DA, Truscott KN, Zeth K (2010) The bacterial N-end rule pathway: expect the unexpected. Mol Microbiol 76(3):545–558

    Article  CAS  PubMed  Google Scholar 

  6. Brower CS, Piatkov KI, Varshavsky A (2013) Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway. Mol Cell 50(2):161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–422

    Article  CAS  PubMed  Google Scholar 

  9. Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, Korn A, Marquez J, Szarejko I, Maluszynski M, King J, Axcell B, Smart K, Corbineau F, Holdsworth MJ (2016) Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotechnol J 14:40. doi:10.1111/pbi.12334

    Article  CAS  PubMed  Google Scholar 

  10. Potuschak T, Stary S, Schlögelhofer P, Becker F, Nejinskaia V, Bachmair A (1998) PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci U S A 95(14):7904–7908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stary S, Yin X-J, Potuschak T, Schlögelhofer P, Nizhynska V, Bachmair A (2003) PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol 133(3):1360–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garzón M, Eifler K, Faust A, Scheel H, Hofmann K, Koncz C, Yephremov A, Bachmair A (2007) PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett 581(17):189–196

    Article  Google Scholar 

  13. Yoshida S, Ito M, Callis J, Nishida I, Watanabe A (2002) A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J 32(1):129–137

    Article  CAS  PubMed  Google Scholar 

  14. Graciet E, Walter F, Ó’Maoiléidigh DS, Pollmann S, Meyerowitz EM, Varshavsky A, Wellmer F (2009) The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. Proc Natl Acad Sci U S A 106(32):13618–13623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten HM, Riegler H, Hoefgen R, Perata P, van Dongen JT, Licausi F (2014) Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat Commun 5:3425. doi:10.1038/ncomms4425

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sherman F, Stewart JW, Tsunasawa S (1985) Methionine or not methionine at the beginning of a protein. Bioessays 3:27–31

    Article  CAS  PubMed  Google Scholar 

  17. Meinnel T, Serero A, Giglione C (2006) Impact of the N-terminal amino acid on targeted protein degradation. Biol Chem 387(7):839–851

    Article  CAS  PubMed  Google Scholar 

  18. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C (2012) Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α-acetylation features. Mol Cell Proteomics 11:M111.015131

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giglione C, Serero A, Pierre M, Boisson B, Meinnel T (2000) Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 19(21):5916–5929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giglione C, Vallon O, Meinnel T (2003) Control of protein life-span by N-terminal methionine excision. EMBO J 22(1):13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ross S, Giglione C, Pierre M, Espagne C, Meinnel T (2005) Functional and developmental impact of cytosolic protein N-terminal methionine excision in Arabidopsis. Plant Physiol 137:623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T (2006) The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 12:2336–2349

    Article  Google Scholar 

  23. Venne AS, Solari FA, Faden F, Pareti T, Dissmeyer N, Zahedi RP (2015) An improved workflow for quantitative N-terminal ChaFRADIC to study proteolytic events in Arabidopsis thaliana seedlings. Proteomics 15:2458

    Article  CAS  PubMed  Google Scholar 

  24. Whitcomb DC, Lowe ME (2007) Human pancreatic digestive enzymes. Dig Dis Sci 52(1):1–17

    Article  CAS  PubMed  Google Scholar 

  25. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234(4773):179–186

    Article  CAS  PubMed  Google Scholar 

  26. Varshavsky A (2000) Ubiquitin fusion technique and its descendants. Methods Enzymol 327:578–593

    Article  CAS  PubMed  Google Scholar 

  27. Varshavsky A (2005) Ubiquitin fusion technique and related methods. Methods Enzymol 399:777–799

    Article  CAS  PubMed  Google Scholar 

  28. Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48(6):1035–1046

    Article  CAS  PubMed  Google Scholar 

  29. Baker RT (1996) Protein expression using ubiquitin fusion and cleavage. Curr Opin Biotechnol 7(5):541–546

    Article  CAS  PubMed  Google Scholar 

  30. Gilchrist CA, Gray DA, Baker RT (1997) A ubiquitin-specific protease that efficiently cleaves the ubiquitin-proline bond. J Biol Chem 272(51):32280–32285

    Article  CAS  PubMed  Google Scholar 

  31. Piatkov K, Graciet E, Varshavsky A (2013) Ubiquitin reference technique and its use in ubiquitin-lacking prokaryotes. PLoS One 8(6):e67952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bachmair A, Becker F, Schell J (1993) Use of a reporter transgene to generate arabidopsis mutants in ubiquitin-dependent protein degradation. Proc Natl Acad Sci U S A 90(2):418–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoo S, Cho Y, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  CAS  PubMed  Google Scholar 

  34. Maldonado-Bonilla L, Eschen-Lippold L, Gago-Zachert S, Tabassum N, Bauer N, Scheel D, Lee J (2014) The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen-associated molecular pattern-triggered immune responses. Plant Cell Physiol 55(2):412–425

    Article  CAS  PubMed  Google Scholar 

  35. Kwon Y, Kashina A, Davydov I, Hu R, An JY, Seo JW (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297(5578):96–99

    Article  CAS  PubMed  Google Scholar 

  36. Sheng J, Kumagai A, Dunphy WG, Varshavsky A (2002) Dissection of c-MOS degron. EMBO J 21(22):6061–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov IV, Kwon YT (2005) RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 102(42):15030–15035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carrington JC, Dougherty WG (1988) A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci U S A 85:3391–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parks TD, Leuther KK, Howard ED, Johnston SA, Dougherty WG (1994) Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal Biochem 216:413–417

    Article  CAS  PubMed  Google Scholar 

  40. Kapust RB, Tozser J, Copeland TD, Waugh DS (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955

    Article  CAS  PubMed  Google Scholar 

  41. Phan J, Zdanov A, Evdokimov AG, Tropea JE, Peters HK, Kapust RB, Li M, Wlodawer A, Waugh DS (2002) Structural basis for the substrate specificity of tobacco etch virus protease. J Biol Chem 277:50564–50572

    Article  CAS  PubMed  Google Scholar 

  42. Taxis C, Stier G, Spadaccini R, Knop M (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5:267

    Article  PubMed  PubMed Central  Google Scholar 

  43. Taxis C, Knop M (2012) TIPI: TEV protease-mediated induction of protein instability. Methods Mol Biol 832:611–626

    Article  CAS  PubMed  Google Scholar 

  44. Frey S, Görlich D (2014) A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. J Chromatogr A 1337:95–105

    Article  CAS  PubMed  Google Scholar 

  45. Bachmair A, Varshavsky A (1989) The degradation signal in a short-lived protein. Cell 56:1019–1032

    Article  CAS  PubMed  Google Scholar 

  46. Jungbluth M, Renicke C, Taxis C (2010) Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 4:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Verhoeven KD, Altstadt OC, Savinov SN (2012) Intracellular detection and evolution of site-specific proteases using a genetic selection system. Appl Biochem Biotechnol 166:1340–1354

    Article  CAS  PubMed  Google Scholar 

  48. Yi L, Sun H, Itzen A, Triola G, Waldmann H, Goody RS, Wu YW (2011) One-pot dual-labeling of a protein by two chemoselective reactions. Angew Chem Int Ed Engl 50:8287–8290

    Article  CAS  PubMed  Google Scholar 

  49. Renicke C, Spadaccini R, Taxis C (2013) A tobacco etch virus protease with increased substrate tolerance at the P1′ position. PLoS One 8:e67915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  51. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  52. Bachmair A, Becker F, Masterson RV, Schell J (1990) Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations and necrotic lesions in a higher plant. EMBO J 9:4543–4549

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kapust RB, Tozser J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14(12):993–1000

    Article  CAS  PubMed  Google Scholar 

  54. Thao S, Zhao Q, Kimball T, Steffen E, Blommel PG, Riters M, Newman CS, Fox BG, Wrobel RL (2004) Results from high-throughput DNA cloning of Arabidopsis thaliana target genes using site-specific recombination. J Struct Funct Genomics 5(4):267–276

    Article  PubMed  Google Scholar 

  55. Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64(2):355–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Carolin Mai for critical reading and helpful comments on the manuscript and Andreas Bachmair for sharing pRTUB8 containing the plant codon-optimized synthetic human Ub gene. This work was supported by a grant for setting up the junior research group of the ScienceCampus HallePlant-based Bioeconomy to N.D., by a Ph.D. fellowship of the Landesgraduiertenförderung Sachsen-Anhalt awarded to C.N., and a grant of the Leibniz-DAAD Research Fellowship Programme by the Leibniz Association and the German Academic Exchange Service (DAAD) to A.C.M. and N.D. Financial support came from the Leibniz Association, the state of Saxony Anhalt, the Deutsche Forschungsgemeinschaft (DFG) Graduate Training Center GRK1026 “Conformational Transitions in Macromolecular Interactions” at Halle, and the Leibniz Institute of Plant Biochemistry (IPB) at Halle, Germany. To complete work on this project, a Short Term Scientific Mission (STSM) of the European Cooperation in Science and Technology (COST) was granted to A.C.M. and N.D. by the COST Action BM1307—“European network to integrate research on intracellular proteolysis pathways in health and disease (PROTEOSTASIS)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Dissmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Naumann, C., Mot, A.C., Dissmeyer, N. (2016). Generation of Artificial N-end Rule Substrate Proteins In Vivo and In Vitro. In: Lois, L., Matthiesen, R. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 1450. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3759-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3759-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3757-8

  • Online ISBN: 978-1-4939-3759-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics