Skip to main content

Recommendation Techniques for Drug–Target Interaction Prediction and Drug Repositioning

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1415))

Abstract

The usage of computational methods in drug discovery is a common practice. More recently, by exploiting the wealth of biological knowledge bases, a novel approach called drug repositioning has raised. Several computational methods are available, and these try to make a high-level integration of all the knowledge in order to discover unknown mechanisms. In this chapter, we review drug–target interaction prediction methods based on a recommendation system. We also give some extensions which go beyond the bipartite network case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iskar M, Zeller G, Blattmann P et al (2013) Characterization of drug-induced transcriptional modules: towards drug repositioning and functional understanding. Mol Syst Biol 9:662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li H, Gao Z, Kang L et al (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34: W219–W224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keiser MJ, Roth BL, Armbruster BN et al (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206

    Article  CAS  PubMed  Google Scholar 

  4. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  5. González-Díaz H, Prado-Prado F, García-Mera X et al (2011) MIND-BEST: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae. J Proteome Res 10: 1698–1718

    Article  PubMed  Google Scholar 

  6. Keiser MJ, Setola V, Irwin JJ et al (2009) Predicting new molecular targets for known drugs. Nature 462:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuhn M, Szklarczyk D, Pletscher-Frankild S et al (2014) STITCH 4: integration of protein–chemical interactions with user data. Nucleic Acids Res 42:D401–D407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yildirim MA, Goh KI, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25: 1119–1126

    Article  CAS  PubMed  Google Scholar 

  9. Phatak SS, Zhang S (2013) A novel multi-modal drug repurposing approach for identification of potent ACK1 inhibitors. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. NIH Public Access, 2013.

    Google Scholar 

  10. Campillos M, Kuhn M, Gavin AC et al (2008) Drug target identification using side-effect similarity. Science 321:263–266

    Article  CAS  PubMed  Google Scholar 

  11. Jin G, Wong STC (2014) Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 19:637–644

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Liu MX, Yan G (2012) Drug-target interaction prediction by random walk on the heterogeneous network. Mol BioSyst 6: 1970–1978

    Article  Google Scholar 

  13. Mei JP, Kwoh CK, Yang P et al (2013) Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29:238–245

    Article  CAS  PubMed  Google Scholar 

  14. Iorio F, Bosotti R, Scacheri E et al (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci 107:14621–14626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamanishi Y, Araki M, Gutteridge A et al (2008) Prediction of drug--target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24:i232–i240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng F, Liu C, Jiang J et al (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8(e1002503)

    Google Scholar 

  17. Zhou T, Ren J, Medo M et al (2007) Bipartite network projection and personal recommendation. Phys Rev E 76:046115–046122

    Article  Google Scholar 

  18. Alaimo S, Pulvirenti A, Giugno R et al (2013) Drug–target interaction prediction through domain-tuned network-based inference. Bioinformatics 29:2004–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27:3036–3043

    Article  PubMed  Google Scholar 

  20. Lamb J, Crawford ED, Peck D et al (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  21. Amelio I, Gostev M, Knight RA et al (2014) DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information. Cell Death Dis 5:e1051–e1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dudley JT, Sirota M, Shenoy M et al (2011) Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 3:96ra76

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sirota M, Dudley JT, Kim J et al (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 3:77

    Google Scholar 

  24. Li J, Lu Z (2012) A new method for computational drug repositioning using drug pairwise similarity. Presented at the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2012, Ottawa, ON, Canada

    Google Scholar 

  25. Li J, Lu Z (2013) Pathway-based drug repositioning using causal inference. BMC Bioinformatics 14:S3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Agarwal P (2009) A pathway-based view of human diseases and disease relationships. PLoS ONE 4:e4346

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang J, Karhinen L, Xu T et al (2013) Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways. PLoS Comput Biol 9:e1003226–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma J, Zhang X, Ung CY et al (2012) Metabolic network analysis revealed distinct routes of deletion effects between essential and non-essential genes. Mol BioSyst 8:1179–1186

    Article  CAS  PubMed  Google Scholar 

  29. Barve A, Rodrigues JFM, Wagner A (2012) Superessential reactions in metabolic networks. Proc Natl Acad Sci 109:E1121–E1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yeh I, Hanekamp T, Tsoka S et al (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res 14:917–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh S, Malik BK, Sharma DK (2007) Choke point analysis of metabolic pathways in E. histolytica: a computational approach for drug target identification. Bioinformation 2:68

    Article  PubMed  PubMed Central  Google Scholar 

  32. Perumal D, Lim CS, Sakharkar MK (2009) A comparative study of metabolic network topology between a pathogenic and a non-pathogenic bacterium for potential drug target identification. Summit on Translat Bioinforma 2009:100

    PubMed  PubMed Central  Google Scholar 

  33. Fatumo S, Plaimas K, Mallm J-P et al (2009) Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infect Genet Evol 9:351–358

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann GR, Lehar J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42

    Article  CAS  PubMed  Google Scholar 

  35. Savino R, Paduano S, Preianò M et al (2012) The proteomics big challenge for biomarkers and new drug-targets discovery. Int J Mol Sci 13:13926–13948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bush K, Courvalin P, Dantas G et al (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  CAS  PubMed  Google Scholar 

  38. Logue JS, Morrison DK (2012) Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev 26:641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nussinov R, Tsai C-J, Mattos C (2013) “Pathway drug cocktail”: targeting Ras signaling based on structural pathways. Trends Mol Med 19:695–704

    Article  PubMed  Google Scholar 

  40. Holzapfel G, Buhrman G, Mattos C (2012) Shift in the equilibrium between on and off states of the allosteric switch in Ras-GppNHp affected by small molecules and bulk solvent composition. Biochemistry 51:6114–6126

    Article  CAS  PubMed  Google Scholar 

  41. van der Greef J, McBurney RN (2005) Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 4:961–967

    Article  PubMed  Google Scholar 

  42. Haibe-Kains B, El-Hachem N, Birkbak NJ et al (2013) Inconsistency in large pharmacogenomic studies. Nature 504:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alaimo S, Bonnici V, Cancemi D et al (2015) DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference. BMC Syst Biol 9:S4

    Article  PubMed  PubMed Central  Google Scholar 

  44. Konstan JA, Miller BN, Maltz D et al (1997) GroupLens: applying collaborative filtering to Usenet news. Commun ACM 40:77–87

    Article  Google Scholar 

  45. Alaimo S, Giugno R, Pulvirenti A (2014) ncPred: ncRNA-disease association prediction through tripartite network-based inference. Front Bioeng Biotechnol 2:71.

    Google Scholar 

  46. Herlocker JL, Konstan JA, Terveen LG et al (2004) Evaluating collaborative filtering recommender systems. ACM Transact Inform Syst 22:5–53

    Article  Google Scholar 

  47. Swets JA (1963) Information retrieval systems. Science 141:245–250

    Article  CAS  PubMed  Google Scholar 

  48. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  49. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  CAS  PubMed  Google Scholar 

  50. Hattori M, Okuno Y, Goto S et al (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 125:11853–11865

    Article  CAS  PubMed  Google Scholar 

  51. Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4: 233–235

    Google Scholar 

  52. Tribus Myron Thermostatics and thermodynamics: an introduction to energy, information and states of matter, with engineering applications. van Nostrand, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Pulvirenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alaimo, S., Giugno, R., Pulvirenti, A. (2016). Recommendation Techniques for Drug–Target Interaction Prediction and Drug Repositioning. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 1415. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3572-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3572-7_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3570-3

  • Online ISBN: 978-1-4939-3572-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics