Skip to main content

Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study

  • Protocol
Systems Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1386))

Abstract

The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Johnson A, Lewin J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 6th edn. Garland Science, New York

    Google Scholar 

  2. Stark J, Hardy K (2003) Science 301(5637):1192

    Article  CAS  PubMed  Google Scholar 

  3. Murray JD (2008) An introduction to mathematical biology: Pt. 1, 3rd edn. Springer, Berlin

    Google Scholar 

  4. Gardiner CW (2009) Stochastic methods: a handbook for the natural and social sciences, 4th edn. Springer, Berlin

    Google Scholar 

  5. Jost J (2005) Dynamical systems: examples of complex behaviour. Springer, Berlin

    Google Scholar 

  6. Gilbert N (2008) Agent-based models: quantitative applications in the social sciences. SAGE Publications, London

    Google Scholar 

  7. von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  8. Wolfram S (1983) Rev Mod Phys 55(3):601

    Article  Google Scholar 

  9. Logan CY, Nusse R (2004) Annu Rev Cell Dev Biol 20:781

    Article  CAS  PubMed  Google Scholar 

  10. Polakis P (2000) Genes Dev 14(15):1837

    CAS  PubMed  Google Scholar 

  11. Reya T, Clevers H (2005) Nature 434(7035):843

    Article  CAS  PubMed  Google Scholar 

  12. Vermeulen L, De Sousa E Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP (2010) Nat Cell Biol 12(5):468

    Article  CAS  PubMed  Google Scholar 

  13. Goentoro L, Kirschner MW (2009) Mol Cell 36(5):872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hernández AR, Klein AM, Kirschner MW (2012) Science 338(6112):1337

    Article  PubMed  Google Scholar 

  15. Tan CW, Gardiner BS, Hirokawa Y, Layton MJ, Smith DW, Burgess AW (2012) PLoS ONE 7(2):e31882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lloyd-Lewis B, Fletcher AG, Dale TC, Byrne HM (2013) Wiley Interdiscip Rev: Syst Biol Med 5(4):391

    CAS  Google Scholar 

  17. Clevers H, Nusse R (2012) Cell 149(6):1192

    Article  CAS  PubMed  Google Scholar 

  18. Franca-Koh J, Yeo M, Fraser E, Young N, Dale TC (2002) J Biol Chem 277(46):43844

    Article  CAS  PubMed  Google Scholar 

  19. Wiechens N, Heinle K, Englmeier L, Schohl A, Fagotto F (2004) J Biol Chem 279(7):5263

    Article  CAS  PubMed  Google Scholar 

  20. Cong F, Varmus H (2004) Proc Natl Acad Sci USA 101(9):2882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Henderson BR, Fagotto F (2002) EMBO Rep 3(9):834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Itoh K, Brott BK, Bae GU, Ratcliffe MJ, Sokol SY (2005) J Biol 4(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  23. Habas R, Dawid IB (2005) J Biol 4(1):2

    Article  PubMed Central  PubMed  Google Scholar 

  24. Heuberger J, Birchmeier W (2010) Cold Spring Harb Perspect Biol 2(2):a002915

    Article  PubMed Central  PubMed  Google Scholar 

  25. Barry ER, Camargo FD (2013) Curr Opin Cell Biol 25(2):247

    Article  CAS  PubMed  Google Scholar 

  26. Basan M, Idema T, Lenz M, Joanny JF, Risler T (2010) Biophys J 98(12):2770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. MacLean AL, Rosen Z, Byrne HM, Harrington HA (2015) Proc Natl Acad Sci USA 112(9):2652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Li VSW, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJR, Maurice MM, Mahmoudi T, Clevers H (2012) Cell 149(6):1245

    Article  CAS  PubMed  Google Scholar 

  29. Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW (2003) PLoS Biol 1(1):e10

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kuhl M, Kracher B, Gross A, Kestler H (2014) In: Hoppler S, Moon R (eds) Wnt signaling in development and disease: molecular mechanisms and biological functions. Wiley, Hoboken, pp 153–160

    Chapter  Google Scholar 

  31. Cho KH, Baek S, Sung MH (2006) FEBS Lett 580(15):3665

    Article  CAS  PubMed  Google Scholar 

  32. Kogan Y, Halevi Tobias KE, Hochman G, Baczmanska AK, Leyns L, Agur Z (2012) Biochem J 444(1):115

    Article  CAS  PubMed  Google Scholar 

  33. Kim D, Rath O, Kolch W, Cho KH (2007) Oncogene 26(31):4571

    Article  CAS  PubMed  Google Scholar 

  34. van Leeuwen IMM, Byrne HM, Jensen OE, King JR (2007) J Theor Biol 247(1):77

    Google Scholar 

  35. Schmitz Y, Wolkenhauer O, Rateitschak K (2011) J Theor Biol 279(1):132

    Article  CAS  PubMed  Google Scholar 

  36. Schmitz Y, Rateitschak K, Wolkenhauer O (2013) Cell Signal 25(11):2210

    Article  CAS  PubMed  Google Scholar 

  37. Krüger R, Heinrich R (2004) Genome Inform 15(1):138

    PubMed  Google Scholar 

  38. Glendinning P (1994) Stability, instability and chaos: an introduction to the theory of nonlinear differential equations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Kevorkian J, Kole JD (1981) Perturbation methods in applied mathematics. Applied mathematical sciences, 1st edn. Springer, Berlin

    Google Scholar 

  40. Mirams GR, Byrne HM, King JR (2010) J Math Biol 60(1):131

    Article  PubMed  Google Scholar 

  41. Saltelli A, Ratto M, Tarantola S, Campolongo F (2005) Chem Rev 105(7):2811

    Article  CAS  PubMed  Google Scholar 

  42. Brewer D, Barenco M, Callard R, Hubank M, Stark J (2008) Philos Trans A Math Phys Eng Sci 366(1865):519

    Article  PubMed  Google Scholar 

  43. Gershenfeld N (2011) The nature of mathematical modeling. Cambridge University Press, Cambridge

    Google Scholar 

  44. Beguerisse-Díaz M, Wang B, Desikan R, Barahona M (2012) J R Soc Interface 9(73):1925

    Article  PubMed Central  PubMed  Google Scholar 

  45. Tan CW, Gardiner BS, Hirokawa Y, Smith DW, Burgess AW (2014) BMC Syst Biol 8(1):44

    Article  PubMed Central  PubMed  Google Scholar 

  46. Cox D, Hinkley D (1979) Theoretical statistics. Chapman and Hall/CRC, London

    Google Scholar 

  47. Carlin B, Louis T (1996) Bayes and empirical Bayes methods for data analysis, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  48. Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2014) Bayesian data analysis, 3rd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  49. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH (2009) J R Soc Interface 6(31):187

    Article  PubMed Central  PubMed  Google Scholar 

  50. Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf MPH (2014) Nat Protoc 9(2):439

    Article  CAS  PubMed  Google Scholar 

  51. Liepe J, Barnes CP, Cule E, Erguler K, Kirk P, Toni T, Stumpf MPH (2010) Bioinformatics 26(14):1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Zhou Y, Liepe J, Sheng X, Stumpf MPH, Barnes CP (2011) Bioinformatics 27(6):874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Blüthgen N, Herzel H (2003) J Theor Biol 225(3):293

    Article  PubMed  Google Scholar 

  54. Kitano H, Oda K (2006) Mol Syst Biol 2:2006.0022

    Article  PubMed Central  PubMed  Google Scholar 

  55. Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J (2004) Cell 118(6):675

    Article  CAS  PubMed  Google Scholar 

  56. Secrier M, Toni T, Stumpf MPH (2009) Mol BioSyst 5(12):1925

    Article  CAS  PubMed  Google Scholar 

  57. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) PLoS Comput Biol 3(10):1871

    Article  CAS  PubMed  Google Scholar 

  58. MacLean AL, Filippi S, Stumpf MPH (2014) Proc Natl Acad Sci USA 111(10):3882

    Article  Google Scholar 

  59. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C (2013) PLoS Comput Biol 9(1):e1002803

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ratmann O, Donker G, Meijer A, Fraser C, Koelle K (2012) PLoS Comput Biol 8(12):e1002835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kirk P, Thorne T, Stumpf MPH (2013) Curr Opin Biotechnol 24(4):767

    Article  CAS  PubMed  Google Scholar 

  62. Babtie AC, Kirk P, Stumpf MPH (2014) Proc Natl Acad Sci USA 111(52):18507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Feinberg M (1987) Chem Eng Sci 42(10):2229

    Article  CAS  Google Scholar 

  64. Feinberg M (1988) Chem Eng Sci 43(1):1

    Article  CAS  Google Scholar 

  65. Craciun G, Feinberg M (2005) SIAM J Appl Math 65(5):1526

    Article  CAS  Google Scholar 

  66. Craciun G, Feinberg M (2006) IEE Proc Syst Biol 153(4):179

    Article  CAS  Google Scholar 

  67. Craciun G, Feinberg M (2006) SIAM J Appl Math 66(4):1321

    Google Scholar 

  68. Feliu E, Wiuf C (2011) arXiv http://arxiv.org/abs/1109.5149v3

  69. Feliu E, Wiuf C (2013) Bioinformatics 29(18):2327

    Article  CAS  PubMed  Google Scholar 

  70. Craciun G, Tang Y, Feinberg M (2006) Proc Natl Acad Sci USA 103(23):8697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Joshi B, Shiu A (2014) arXiv http://arxiv.org/abs/1412.5257

  72. Ellison P, Feinberg M, Ji H (2011). Available at http://www.chbmeng.ohio-state.edu/~feinberg/crntwin/

    Google Scholar 

  73. Harrington HA, Ho KL, Thorne T, Stumpf MPH (2012) Proc Natl Acad Sci USA 109(39):15746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Ramis-Conde I, Drasdo D, Anderson ARA, Chaplain MAJ (2008) Biophys J 95(1):155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, Wrana JL, Attisano L (2010) Dev Cell 18(4):579

    Article  CAS  PubMed  Google Scholar 

  76. van Leeuwen IMM, Mirams GR, Walter A, Fletcher AG, Murray P, Osborne J, Varma S, Young SJ, Cooper J, Doyle B, Pitt-Francis J, Momtahan L, Pathmanathan P, Whiteley JP, Chapman SJ, Gavaghan DJ, Jensen OE, King JR, Maini PK, Waters SL, Byrne HM (2009) Cell Prolif 42(5):617

    Article  PubMed  Google Scholar 

  77. Fletcher AG, Breward CJW, Jonathan Chapman S (2012) J Theor Biol 300:118

    Article  PubMed  Google Scholar 

  78. Murray PJ, Kang JW, Mirams GR, Shin SY, Byrne HM, Maini PK, Cho KH (2010) Biophys J 99(3):716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Murray PJ, Walter A, Fletcher AG, Edwards CM, Tindall MJ, Maini PK (2011) Phys Biol 8(2):026011

    Article  PubMed Central  PubMed  Google Scholar 

  80. Buske P, Galle J, Barker N, Aust G, Clevers H, Loeffler M (2011) PLoS Comput Biol 7(1):e1001045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors acknowledge funding from King Abdullah University of Science and Technology (KAUST) KUK-C1-013-04 and the workshop funded by this grant on Model Identification (January 2014). HAH gratefully acknowledges funding from EPSRC Fellowship EP/K041096/1. All authors also thank Gary Mirams for his help with Figs. 4 and 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. MacLean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

MacLean, A.L., Harrington, H.A., Stumpf, M.P.H., Byrne, H.M. (2016). Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study. In: Schmitz, U., Wolkenhauer, O. (eds) Systems Medicine. Methods in Molecular Biology, vol 1386. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3283-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3283-2_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3282-5

  • Online ISBN: 978-1-4939-3283-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics