Skip to main content

Optical Implementation of Linear Canonical Transforms

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

Abstract

We consider optical implementation of arbitrary one-dimensional and two-dimensional linear canonical and fractional Fourier transforms using lenses and sections of free space. We discuss canonical decompositions, which are generalizations of common Fourier transforming setups. We also look at the implementation of linear canonical transforms based on phase-space rotators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Alieva, V. Lopez, F. Agullo Lopez, L.B. Almeida, The fractional Fourier transform in optical propagation problems. J. Mod. Opt. 41, 1037–1044 (1994)

    Article  ADS  Google Scholar 

  2. B. Barshan, M.A. Kutay, H.M. Ozaktas, Optimal filtering with linear canonical transformations. Opt. Commun. 135, 32–36 (1997)

    Article  ADS  Google Scholar 

  3. M.J. Bastiaans, The Wigner distribution function applied to optical signals and systems. Opt. Commun. 25, 26–30 (1978)

    Article  ADS  Google Scholar 

  4. M.J. Bastiaans, The Wigner distribution function and Hamilton’s characteristics of a geometric-optical system. Opt. Commun. 30(3), 321–326 (1979)

    Article  ADS  Google Scholar 

  5. M.J. Bastiaans, Wigner distribution function and its application to first-order optics. J. Opt. Soc. Am. 69, 1710–1716 (1979)

    Article  ADS  Google Scholar 

  6. M.J. Bastiaans, Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems. Optik 82, 173–181 (1989)

    Google Scholar 

  7. M.J. Bastiaans, Second-order moments of the Wigner distribution function in first-order optical systems. Optik 88, 163–168 (1991)

    Google Scholar 

  8. L.M. Bernardo, O.D.D. Soares, Fractional Fourier transforms and imaging. J. Opt. Soc. Am. A. 11, 2622–2626 (1994)

    Article  ADS  Google Scholar 

  9. L.M. Bernardo, O.D.D. Soares, Fractional Fourier transforms and optical systems. Opt. Commun. 110, 517–522 (1994)

    Article  ADS  Google Scholar 

  10. A. Cámara, T. Alieva, J.A. Rodrigo, M.L. Calvo, Phase space tomography reconstruction of the Wigner distribution for optical beams separable in Cartesian coordinates. J. Opt. Soc. Am. A 26(6), 1301–1306 (2009)

    Article  ADS  Google Scholar 

  11. M.F. Erden, H.M. Ozaktas, A. Sahin, D. Mendlovic, Design of dynamically adjustable anamorphic fractional Fourier transformer. Opt. Commun. 136, 52–60 (1997)

    Article  ADS  Google Scholar 

  12. J. García, R.G. Dorsch, A.W. Lohmann, C. Ferreira, Z. Zalevsky, Flexible optical implementation of fractional Fourier transform processors. Applications to correlation and filtering. Opt. Commun. 133, 393–400 (1997)

    Google Scholar 

  13. M.A. Kutay, H.M. Ozaktas, Optimal image restoration with the fractional Fourier transform. J. Opt. Soc. Am. A. 15, 825–833 (1998)

    Article  ADS  Google Scholar 

  14. M.A. Kutay, H.M. Ozaktas, O. Arıkan, L. Onural, Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Process. 45, 1129–1143 (1997)

    Article  ADS  Google Scholar 

  15. A.W. Lohmann, Image rotation, Wigner rotation, and the fractional order Fourier transform. J. Opt. Soc. Am. A 10, 2181–2186 (1993)

    Article  ADS  Google Scholar 

  16. A.A. Malyutin, Tunable Fourier transformer of the fractional order. Quantum Electron. 36, 79–83 (2006)

    Article  ADS  Google Scholar 

  17. D. Mendlovic, H.M. Ozaktas, Fractional Fourier transforms and their optical implementation: I. J. Opt. Soc. Am. A 10(9), 1875–1881 (1993)

    Article  ADS  Google Scholar 

  18. D. Mendlovic, H.M. Ozaktas, A.W. Lohmann, Graded-index fibers, wigner-distribution functions, and the fractional Fourier transform. Appl. Opt. 33, 6188–6193 (1994)

    Article  ADS  Google Scholar 

  19. D. Mendlovic, Y. Bitran, R. G. Dorsch, C. Ferreira, J. Garcia, H.M. Ozaktas, Anamorphic fractional Fourier transform: optical implementation and applications. Appl. Opt. 34, 7451–7456 (1995)

    Article  ADS  Google Scholar 

  20. D. Mendlovic, H.M. Ozaktas, A.W. Lohmann, Fractional correlation. Appl. Opt. 34(2), 303–309 (1995)

    Article  ADS  Google Scholar 

  21. I. Moreno, C. Ferreira, M.M. Sánchez-López, Ray matrix analysis of anamorphic fractional Fourier systems. J. Opt. A Pure Appl. Opt. 8(5), 427–435 (2006)

    Article  ADS  Google Scholar 

  22. H.M. Ozaktas, M.F. Erden, Relationships among ray optical, gaussian beam, and fractional Fourier transform descriptions of first-order optical systems. Opt. Commun. 143, 75–86 (1997)

    Article  ADS  Google Scholar 

  23. H.M. Ozaktas, D. Mendlovic, Fourier transforms of fractional order and their optical interpretation. Opt. Commun. 101, 163–169 (1993)

    Article  ADS  Google Scholar 

  24. H.M. Ozaktas, D. Mendlovic, Fractional Fourier transforms and their optical implementation, II. J. Opt. Soc. Am. A 10(12), 2522–2531 (1993)

    Article  ADS  Google Scholar 

  25. H.M. Ozaktas, D. Mendlovic, Fractional Fourier optics. J. Opt. Soc. Am. A 12, 743–751 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  26. H.M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Am. A 11, 547–559 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  27. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001)

    Google Scholar 

  28. P. Pellat-Finet, Fresnel diffraction and fractional-order Fourier transform. Opt. Lett. 19(18), 1388 (1994)

    Google Scholar 

  29. P. Pellat-Finet, G. Bonnet, Fractional order Fourier transform and Fourier optics. Opt. Commun. 111, 141–154 (1994)

    Article  ADS  Google Scholar 

  30. J.A. Rodrigo, T. Alieva, M.J. Bastiaans, Phase-space rotators and their applications in optics, chapter, in Optical and Digital Image Processing: Fundamentals and Applications (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  31. J.A. Rodrigo, T. Alieva, M.L. Calvo, Optical system design for ortho-symplectic transformations in phase space. J. Opt. Soc. Am. A 23, 2494–2500 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. J.A. Rodrigo, T. Alieva, M.L. Calvo, Experimental implementation of the gyrator transform. J. Opt. Soc. Am. A 24(10), 3135–3139 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. J.A. Rodrigo, T. Alieva, M.L. Calvo, Programmable two-dimensional optical fractional Fourier processor. Opt. Express 17(7), 4976–4983 (2009)

    Article  ADS  Google Scholar 

  34. A. Sahin, H.M. Ozaktas, D. Mendlovic, Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions. Opt. Commun. 120, 134–138 (1995)

    Article  ADS  Google Scholar 

  35. A. Sahin, M.A. Kutay, H.M. Ozaktas, Nonseparable two-dimensional fractional Fourier transform. Appl. Opt. 37(23), 5444–5453 (1998)

    Article  ADS  Google Scholar 

  36. A. Sahin, H.M. Ozaktas, D. Mendlovic, Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters. Appl. Opt. 37(11), 2130–2141 (1998)

    Article  ADS  Google Scholar 

  37. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Book  Google Scholar 

  38. R. Simon, N. Mukunda, Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams. J. Opt. Soc. Am. A 15(8), 2146–2155 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Simon, K.B. Wolf, Fractional Fourier transforms in two dimensions. J. Opt. Soc. Am. A 17, 2368–2381 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Simon, K.B. Wolf, Structure of the set of paraxial optical systems. J. Opt. Soc. Am. A 17, 342–355 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  41. K. Sundar, N. Mukunda, R. Simon, Coherent-mode decomposition of general anisotropic Gaussian schell-model beams. J. Opt. Soc. Am. A 12(3), 560–569 (1995)

    Article  ADS  Google Scholar 

  42. K.B. Wolf, Integral Transforms in Science and Engineering (Plenum Press, New York, 1979)

    Book  MATH  Google Scholar 

  43. K.B. Wolf. Geometric Optics on Phase Space (Springer, Berlin, 2004)

    MATH  Google Scholar 

Download references

Acknowledgements

H.M. Ozaktas acknowledges partial support of the Turkish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alper Kutay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kutay, M.A., Ozaktas, H.M., Rodrigo, J.A. (2016). Optical Implementation of Linear Canonical Transforms. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_6

Download citation

Publish with us

Policies and ethics