Skip to main content

Gene Targeting for Precision Glyco-Engineering: Production of Biopharmaceuticals Devoid of Plant-Typical Glycosylation in Moss Bioreactors

  • Protocol
Glyco-Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1321))

Abstract

One of the main challenges for the production of biopharmaceuticals in plant-based systems is the modulation of plant-specific glycosylation patterns towards a humanized form. Posttranslational modifications in plants are similar to those in humans, but several differences affect product quality and efficacy and can also cause immune responses in patients. In the moss Physcomitrella patens highly efficient gene targeting via homologous recombination enables glyco-engineering to obtain suitable platform lines for the production of recombinant proteins and biopharmaceuticals. Here we describe the methods which are effective for creating gene targeting constructs and transgenic moss lines as well as confirming successful homologous integration of the constructs and modification of target gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hohe A, Decker EL, Gorr G et al (2002) Tight control of growth and cell differentiation in photoautotrophically growing moss Physcomitrella patens bioreactor cultures. Plant Cell Rep 20:1135–1140

    Article  CAS  Google Scholar 

  2. Cerff M, Posten C (2012) Enhancing the growth of Physcomitrella patens by combination of monochromatic red and blue light—a kinetic study. Biotechnol J 7:527–536

    Article  CAS  PubMed  Google Scholar 

  3. Hohe A, Schween G, Reski R (2001) Establishment of a semicontinuous bioreactor culture of Physcomitrella patens for mass production of protoplasts. Acta Hortic 560:425–428

    CAS  Google Scholar 

  4. Reutter K, Reski R (1996) Production of a heterologous protein in bioreactor cultures of fully differentiated moss plants. Plant Tissue Cult Biotechnol 2:142–147

    Google Scholar 

  5. Hohe A, Reski R (2002) Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts. Plant Sci 163:69–74

    Article  CAS  Google Scholar 

  6. Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  CAS  PubMed  Google Scholar 

  7. Hohe A, Reski R (2005) From axenic spore germination to molecular farming. Plant Cell Rep 23:513–521

    Article  CAS  PubMed  Google Scholar 

  8. Lucumi A, Posten C (2006) Establishment of long-term perfusion cultures of recombinant moss in a pilot tubular photobioreactor. Proc Biochem 41:2180–2187

    Article  CAS  Google Scholar 

  9. Egener T, Granado M, Guitton M-C et al (2002) High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Decker EL, Reski R (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactor. Bioprocess Biosyst Eng 31:3–9

    Article  CAS  PubMed  Google Scholar 

  11. Decker EL, Reski R (2007) Moss bioreactors producing improved biopharmaceuticals. Curr Opin Biotechnol 18:393–398

    Article  CAS  PubMed  Google Scholar 

  12. Decker EL, Reski R (2012) Glycoprotein production in moss bioreactors. Plant Cell Rep 31:453–460

    Article  CAS  PubMed  Google Scholar 

  13. Schaaf A, Tintelnot S, Baur A et al (2005) Use of endogenous signal sequences for transient production and efficient secretion by moss (Physcomitrella patens) cells. BMC Biotechnol 5:30

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weise A, Altmann F, Rodriguez-Franco M et al (2007) High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Delta-fuc-t Delta-xyl-t mutant. Plant Biotechnol J 5:389–401

    Article  CAS  PubMed  Google Scholar 

  15. Rensing SA, Lang D, Zimmer A et al (2008) The Physcomitrella genome reveals insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  16. Zimmer AD, Lang D, Buchta K et al (2013) Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 14:498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hiss M, Laule O, Meskauskiene RM et al (2014) Large scale gene expression profiling data of the model moss Physcomitrella patens help to understand developmental progression, culture and stress conditions. Plant J. 79:530–539

    Google Scholar 

  18. Strepp R, Scholz S, Kruse S et al (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci U S A 95:4368–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lorenz S, Tintelnot S, Reski R, Decker EL (2003) Cyclin D-knockout uncouples developmental progression from sugar availability. Plant Mol Biol 53:227–236

    Article  CAS  PubMed  Google Scholar 

  20. Wiedemann G, Koprivova A, Schneider M et al (2007) The role of the novel adenosine 5′-phosphosulfate reductase in regulation of sulfate assimilation of Physcomitrella patens. Plant Mol Biol 65:667–676

    Article  CAS  PubMed  Google Scholar 

  21. Wiedemann G, Hermsen C, Melzer M et al (2010) Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development. FEBS Lett 584:2271–2278

    Article  CAS  PubMed  Google Scholar 

  22. Khraiwesh B, Arif MA, Seumel GI et al (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  CAS  PubMed  Google Scholar 

  23. Kamisugi Y, Cuming AC, Cove DJ (2005) Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Res 33:6205–6216

    Google Scholar 

  24. Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150

    Article  CAS  PubMed  Google Scholar 

  25. Hohe A, Reski R (2003) A tool for understanding homologous recombination in plants. Plant Cell Rep 21:1135–1142

    Article  CAS  PubMed  Google Scholar 

  26. Koprivova A, Stemmer C, Altmann F et al (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523

    Article  CAS  PubMed  Google Scholar 

  27. Huether CM, Lienhart O, Stemmer C et al (2005) Glyco-engineering of moss lacking plant-specific sugar residues. Plant Biol 7:292–299

    Article  CAS  PubMed  Google Scholar 

  28. Parsons J, Altmann F, Arrenberg CK et al (2012) Moss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants. Plant Biotechnol J 10:851–861

    Article  CAS  PubMed  Google Scholar 

  29. Parsons J, Altmann F, Graf M et al (2013) A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin. Sci Rep 3:3019

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kubo M, Imai A, Nishiyama T et al (2013) System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens. PLoS One 8, e77356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mosquna A, Katz A, Decker EL et al (2009) Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444

    Article  CAS  PubMed  Google Scholar 

  32. Mueller SJ, Lang D, Hoernstein SNW et al (2014) Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation. Plant Physiol 164:2081–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hohe A, Egener T, Lucht JM et al (2004) An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr Genet 44:339–347

    Article  CAS  PubMed  Google Scholar 

  34. Maas C, Werr W (1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep 8:148–151

    Article  CAS  PubMed  Google Scholar 

  35. Reski R (1998) Development, genetics and molecular biology of mosses. Bot Acta 111:1–15

    Article  CAS  Google Scholar 

  36. Kamisugi Y, Cuming AC (2009) Gene targeting. In: Perroud P-F, Cove D, Knight C (eds) Annu. Plant Rev. Moss Physcomitrella patens. Blackwell Publishing, Chichester, pp 76–105

    Google Scholar 

  37. Strotbek C, Krinninger S, Frank W (2013) The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function. Int J Dev Biol 57:553–564

    Article  CAS  PubMed  Google Scholar 

  38. Schween G, Fleig S, Reski R (2002) High-throughput-PCR screen of 15,000 transgenic Physcomitrella plants. Plant Mol Biol Rep 20:43–47

    Article  CAS  Google Scholar 

  39. Büttner-Mainik A, Parsons J, Jérome H et al (2011) Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotechnol J 9:373–383

    Article  PubMed  Google Scholar 

  40. Decker EL, Parsons J, Reski R (2014) Glyco-engineering for biopharmaceutical production in moss bioreactors. Front Plant Sci 5:346

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schulte J, Reski R (2004) High throughput cryopreservation of 140,000 Physcomitrella patens mutants. Plant Biol 6:119–127

    Article  CAS  PubMed  Google Scholar 

  42. Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358

    Article  CAS  PubMed  Google Scholar 

  43. Schween G, Hohe A, Koprivova A, Reski R (2003) Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens. J Plant Physiol 160:209–212

    Article  CAS  PubMed  Google Scholar 

  44. Sambrook J, Russell DW, Cold Spring Harbor Laboratory (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  45. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by contract research “Glykobiologie/Glykomik” of the Baden-Wuerttemberg Stiftung, by the Excellence Initiative of the German Federal and State Governments (EXC294 to R.R.), and EU-co-funded by INTERREG IV Project A17 “ITP-TIP” (ERDF). We thank Anne Katrin Prowse for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Decker, E.L., Wiedemann, G., Reski, R. (2015). Gene Targeting for Precision Glyco-Engineering: Production of Biopharmaceuticals Devoid of Plant-Typical Glycosylation in Moss Bioreactors. In: Castilho, A. (eds) Glyco-Engineering. Methods in Molecular Biology, vol 1321. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2760-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2760-9_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2759-3

  • Online ISBN: 978-1-4939-2760-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics