Skip to main content

Immunofluorescence-Based Methods to Monitor DNA End Resection

  • Protocol
Stress Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1292))

Abstract

Double-strand breaks (DSBs) are the most deleterious among all types of DNA damage that can occur in the cell. These breaks arise from both endogenous (e.g., DNA replication stress) and exogenous insults (e.g., ionizing radiation). DSBs are principally repaired by one of two major pathways: nonhomologous end joining (NHEJ) or homologous recombination (HR). NHEJ is an error-prone process that can occur in all phases of the cell cycle, while HR is limited to the S and G2 phases of the cell cycle when a sister chromatid is available as a template for error-free repair. The first step in HR is “DNA end resection,” a process during which the broken DNA end is converted into a long stretch of 3′-ended single-stranded DNA (ssDNA). In recent years, DNA end resection has been identified as a pivotal step that controls “repair pathway choice,” i.e., the appropriate choice between NHEJ and HR for DSB repair. Therefore, methods to quantitatively or semiquantitatively assess DNA end resection have gained importance in laboratories working on DNA repair. In this chapter, we describe two simple immunofluorescence-based techniques to monitor DNA end resection in mammalian cells. The first technique involves immuno-detection of replication protein A (RPA), an ssDNA-binding protein that binds to resected DNA. The second technique involves labeling of genomic DNA with 5-bromo-2′-deoxyuridine (BrdU) that can be detected by anti-BrdU antibody only after the DNA becomes single stranded due to resection. These methods are not complicated, do not involve sophisticated instrumentation or reporter constructs, and can be applied to most mammalian cell lines and, therefore, should be of broad utility as simple ways of monitoring DNA end resection in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383

    Article  CAS  PubMed  Google Scholar 

  2. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510

    Article  CAS  PubMed  Google Scholar 

  5. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  PubMed  Google Scholar 

  6. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  7. Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17:11–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126–4137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gravel S, Chapman JR, Magill C et al (2008) DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22:2767–2772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mimitou EP, Symington LS (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–774

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Z, Chung WH, Shim EY et al (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981–994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Makharashvili N, Tubbs AT, Yang SH et al (2014) Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol Cell 54:1022–1033

    Article  CAS  PubMed  Google Scholar 

  13. Nicolette ML, Lee K, Guo Z et al (2010) Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat Struct Mol Biol 17:1478–1485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nimonkar AV, Genschel J, Kinoshita E et al (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25:350–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bolderson E, Tomimatsu N, Richard DJ et al (2010) Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic Acids Res 38:1821–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tomimatsu N, Mukherjee B, Deland K et al (2012) Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions. DNA Repair (Amst) 11:441–448

    Article  CAS  Google Scholar 

  17. Daley JM, Sung P (2014) 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 34:1380–1388

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chen X, Niu H, Chung WH et al (2011) Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat Struct Mol Biol 18:1015–1019

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ferretti LP, Lafranchi L, Sartori AA (2013) Controlling DNA-end resection: a new task for CDKs. Front Genet 4:99

    Article  PubMed Central  PubMed  Google Scholar 

  20. Huertas P, Cortes-Ledesma F, Sartori AA et al (2008) CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tomimatsu N, Mukherjee B, Catherine HM et al (2014) Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat Commun 5:3561

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shiotani B, Zou L (2009) Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33:547–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21:281–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kaidi A, Weinert BT, Choudhary C et al (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348–1353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hu Y, Scully R, Sobhian B et al (2011) RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 25:685–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cuadrado M, Martinez-Pastor B, Murga M et al (2006) ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J Exp Med 203:297–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Raderschall E, Golub EI, Haaf T (1999) Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci U S A 96:1921–1926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tomimatsu N, Mukherjee B, Burma S (2009) Distinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells. EMBO Rep 10:629–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Costelloe T, Louge R, Tomimatsu N et al (2012) The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489:581–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhou Y, Caron P, Legube G et al (2014) Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res 42:e19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SB is supported by grants from the National Institutes of Health (RO1 CA149461) and the National Aeronautics and Space Administration (NNX13AI13G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Burma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mukherjee, B., Tomimatsu, N., Burma, S. (2015). Immunofluorescence-Based Methods to Monitor DNA End Resection. In: Oslowski, C. (eds) Stress Responses. Methods in Molecular Biology, vol 1292. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2522-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2522-3_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2521-6

  • Online ISBN: 978-1-4939-2522-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics