Skip to main content

RIP-Seq Data Analysis to Determine RNA–Protein Associations

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1269))

Abstract

Next-generation sequencing (NGS) technologies have opened new avenues of unprecedented power for research in molecular biology and genetics. In particular, their application to the study of RNA-binding proteins (RBPs), extracted through immunoprecipitation (RIP), permits to sequence and characterize all RNAs that were found to be bound in vivo by a given RBP (RIP-Seq). On the other hand, NGS-based experiments, including RIP-Seq, produce millions of short sequence fragments that have to be processed with suitable bioinformatic tools and methods to recover and/or quantify the original sequence sample. In this chapter we provide a survey of different approaches that can be taken for the analysis of RIP-Seq data and the identification of the RNAs bound by a given RBP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horner DS, Pavesi G, Castrignanò T et al (2010) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform 11(2):181–197

    Article  CAS  PubMed  Google Scholar 

  2. Marioni JC, Mason CE, Mane SM et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Glisovic T, Bachorik JL, Yong J et al (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582(14):1977–1986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45(1):87–100

    Article  CAS  PubMed  Google Scholar 

  5. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12):840–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yuan J, Muljo SA (2013) Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol Rev 253(1):290–303

    Article  PubMed Central  PubMed  Google Scholar 

  7. Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6(11 Suppl):S22–S32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26(7):873–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  12. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29(8):1035–1043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Li Y, Zhao DY, Greenblatt JF (2013) RIPSeeker: a statistical package for identifying protein-associated transcripts from RIP-seq experiments. Nucleic Acids Res 41(8):e94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Corcoran DL, Georgiev S, Mukherjee N et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12(8):R79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456(7221):464–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mihailovic M, Wurth L, Zambelli F et al (2012) Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR. RNA 18(1):53–64

    Article  CAS  PubMed  Google Scholar 

  20. Michiels EM, Oussoren E, Van Groenigen M et al (1999) Genes differentially expressed in medulloblastoma and fetal brain. Physiol Genomics 1(2):83–91

    CAS  PubMed  Google Scholar 

  21. Micsinai M, Parisi F, Strino F et al (2012) Picking ChIP-seq peak detectors for analyzing chromatin modification experiments. Nucleic Acids Res 40(9):e70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Pavesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zambelli, F., Pavesi, G. (2015). RIP-Seq Data Analysis to Determine RNA–Protein Associations. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 1269. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2291-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2291-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2290-1

  • Online ISBN: 978-1-4939-2291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics