Skip to main content

Measuring PGC-1α and Its Acetylation Status in Mouse Primary Myotubes

  • Protocol
  • First Online:
Mitochondrial Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1241))

Abstract

Metabolic flexibility is vital for the cells to adapt to different energetic situations, allowing the organisms to adapt to changing conditions and survive challenges. One of the most important regulators of the metabolic flexibility is PGC-1α activity. PGC-1α integrates numerous signals and regulates a variety of transcription factors and nuclear receptors that together regulate mitochondrial homeostasis and fatty acid oxidation. One of the major ways that PGC-1α activity is regulated is by changes in its acetylation status. Thus measuring the acetylation status of PGC-1α is an important indicator of the metabolic flexibility of the cells. In this chapter, we describe an approach to evaluate PGC-1α acetylation in primary mouse myotubes. The method is applicable to other cell types and tissues as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Storlien L, Oakes DE, Kelley DE (2004) Metabolic flexibility. Proc Nutr Soc 63(2):363–368. doi:10.1079/PNS2004349

    Article  PubMed  CAS  Google Scholar 

  2. Galgani JE, Moro C, Ravussin E (2008) Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab 295(5):E1009–E1017. doi:10.1152/ajpendo.90558.2008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Civitarese AE, Ravussin E (2008) Mitochondrial energetics and insulin resistance. Endocrinology 149(3):950–954. doi:10.1210/en.2007-1444

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. van den Brom CE, Huisman MC, Vlasblom R, Boontje NM, Duijst S, Lubberink M, Molthoff CF, Lammertsma AA, van der Velden J, Boer C, Ouwens DM, Diamant M (2009) Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography. Cardiovasc Diabetol 8:39. doi:10.1186/1475-2840-8-39

    Article  PubMed  PubMed Central  Google Scholar 

  5. Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576(1–2):1–14. doi:10.1152/physrev.00025.2007

    Article  PubMed  CAS  Google Scholar 

  6. Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286(1):81–89. doi:10.1016/S0378-1119(01)00809-5

    Article  PubMed  CAS  Google Scholar 

  7. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839. doi:10.1016/S0092-8674(00)81410-5

    Article  PubMed  CAS  Google Scholar 

  8. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124. doi:10.1016/S0092-8674(00)80611-X

    Article  PubMed  CAS  Google Scholar 

  9. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93(4):884S–890S. doi:10.3945/ajcn.110.001917

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3(6):429–438. doi:10.1016/j.cmet.2006.04.013

    Article  PubMed  CAS  Google Scholar 

  11. Kelly TJ, Lerin C, Haas W, Sp G, Puigserver P (2009) GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation. J Biol Chem 284(30):19945–19952. doi:10.1074/jbc.M109.015164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118. doi:10.1038/nature03354

    Article  PubMed  CAS  Google Scholar 

  13. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26(7):1913–1923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Jeninga EH, Schoojans K, Auwerx J (2010) Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29(33):4617–4624. doi:10.1038/onc.2010.206

    Article  PubMed  CAS  Google Scholar 

  15. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122. doi:10.1016/j.cell.2006.11.013

    Article  PubMed  CAS  Google Scholar 

  16. Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliot PJ, Auwerx J (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 8(5):347–358. doi:10.1016/j.cmet.2008.08.017

    Article  PubMed  CAS  Google Scholar 

  17. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopex-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Psencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342. doi:10.3410/f.1052795.504713

    Article  PubMed  CAS  Google Scholar 

  18. Minor RJ, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM, Abdelmohsen K, Shin YK, Canto C, Scheibye-Knudsen M, Krawczyk M, Irusta PM, Martin-Montalvo A, Hubbard BP, Zhang Y, Lehrmann E, White AA, Price NL, Swindell WR, Pearson KJ, Becker KG, Bohr VA, Gorospe M, Egan JM, Talan MI, Auwerx J, Westphal CH, Ellis JL, Ungvari Z, Vlasuk GP, Elliott PJ, Sinclair DA, de Cabo R (2011) SRT1720 improves survival and healthspan of obese mice. Sci Rep 1:70. doi:10.1038/srep00070

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)905273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Eric L. Bell for helpful advice on the immunoprecipitation and acetylation detection protocol. This work was supported by a fellowship from the Portuguese Foundation for Science and Technology (SFRH/BD/44674/2008) to A.P.G, the Paul F. Glenn Foundation for Medical Research, the United Mitochondrial Disease Foundation, The Juvenile Diabetes Research Foundation, and NIA/NIH grants to D.A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sinclair Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Gomes, A.P., Sinclair, D.A. (2015). Measuring PGC-1α and Its Acetylation Status in Mouse Primary Myotubes. In: Palmeira, C., Rolo, A. (eds) Mitochondrial Regulation. Methods in Molecular Biology, vol 1241. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1875-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1875-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1874-4

  • Online ISBN: 978-1-4939-1875-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics